Mastering the hp 39g+

A guide for teachers, students and other users of the hp $39 \mathrm{~g}+$, hp $39 \mathrm{~g} \& \mathrm{hp} 40 \mathrm{~g}$

Edition 1.1
HP part number F2224-90010

Table of Contents

Introduction 12
How to use this Manual 13
Early High School 13
Pre-Calculus 14
Calculus 14
Where's the ON button? 15
Some Keyboard Examples 16
Keys \& Notation Conventions 17
Some essential keys 17
The SHIFT key 17
The ALPHA key 18
The Screen keys 18
Pop-up menus \& short-cuts 18
Everything revolves around Aplets! 21
Some typical aplet views 22
The HOME view. 25
What is the HOME view? 25
Exploring the keyboard 26
The screen keys 26
Aplet related keys 26
The arrow keys 26
The SYMB, PLOT and NUM keys 27
Intro to the VIEWS menu 28
The VARS key 28
The SETUP views 30
The MODES view 30
Numeric formats 31
The ANS key 32
The negative key 33
The CHARS key 33
The DEL and CLEAR keys 34
Angle and Numeric settings 35
Memory Management 37
The MEMORY MANAGER view 37
Downloaded aplets \& memory 38
The GRAPHICS MANAGER 39
The LIBRARY MANAGER 39
Fractions on the hp 39g+ 40
Pitfalls to watch for 42
The HOME History 43
COPYing calculations 43
Clearing the History 44
SHOWing results 44
Storing and Retrieving Memories 45
Referring to other aplets from the HOME view 46
An introduction to the MATH Menu 47
Resetting the calculator 48
Soft reboot 48
Soft reboot (Hardware) 49
Hard reboot (with memory wipe) 49
Summary 50
The Function Aplet 51
Choose the aplet 51
The SYMB view 52
The XT θ button 52
F CHEing your function 52
The NUM view 53
The PLOT view 53
Auto Scale 54
The PLOT SETUP view 55
Detail vs．Faster 55
Simultaneous 56
Connect 56
Axes． 56
Labels 56
Grid 56
The default axis settings 57
The 团目部 57
The MENU toggle 57
The Menu Bar functions 58
Trace 58
Defn 58
Goto 59
The Zoom Sub－menu 60
Center 60
In／Out 60
Box． 61
X－Zoom In／Out x4 and Y－Zoom In／Out x4 62
Square 62
Auto Scale，Decimal，Integer and Trig 62
The FCN menu 63
Root 63
Intersection 64
Slope 64
Signed area 65
Definite integrals 65
Tracing the integral in PLOT 66
Areas between and under curves 67
Extremum 68
Tips \＆Tricks－Function 69
Finding a suitable set of axes 69
Composite functions 71
Using functions in the HOME view 72
Differentiating 73
Circular functions 74
Trig functions 76
Retaining calculated values． 77
The NUM view revisited 77
ZOOM 78
Integration：The definite integral using the \int function 80
Integration：The algebraic indefinite integral 81
The hp 40 g Computer Algebra System 82
Integration：The definite integral using PLOT variables 83
Piecewise defined functions 85
＇Nice＇scales 86
Use of brackets in functions 87
Problems when evaluating limits 88
Gradient at a point 90
Finding and accessing polynomial roots 91
The VIEWS menu 92
Plot-Detail 93
Plot-Table 94
Overlay Plot 95
Auto Scale 96
Decimal, Integer \& Trig 97
Downloaded Aplets from the Internet 99
Curve Areas 99
Linear Programming 99
The Parametric Aplet 100
Choose XRng, YRng \& TRng 100
The effect of TRng 101
TStep controls smoothness 101
Tips \& Tricks - Parametric equations 103
Fun and games 103
Example 1 103
Example 2 103
Vectors 104
Example 1 104
Example 2 105
The Polar Aplet 106
Choose XRng, YRng \& θ Rng 106
θ Step and smoothness 106
Changing the default for θ Step 106
Circular circles 106
The Sequence Aplet 107
Recursive or non-recursive 107
First, second \& general terms 107
Convenient screen keys provided 108
Tips \& Tricks - Sequences \& Series 110
Defining a generalized GP and the sum to n terms 110
Solving sequence problems 110
Modeling loans 112
The Solve Aplet 113
Equations vs. expressions 113
Entering the equation 113
Solving for a missing value 114
The INFO report 114
Multiple solutions and the initial guess 115
Graphing in Solve 116
Transferring approximate solutions 116
Referring to functions from other aplets 117
A detailed explanation of PLOT in Solve 118
The meaning of [iF口 messages 120
Tips \& Tricks - Solve 121
Easy problems 121
Harder problems 121
The Stats Aplet - Univariate Data 122
Uni vs. Bi-variate data 122
Clearing data 122
Sorting data 123
The STATS key 123
Functions of columns 124
Registering columns as 'in use 124
Working with frequency tables 125
Auto scale 125
Plot Setup options 126
Box and whisker graphs 126
The effect of HRng 127
Grouped data \& HWidth 127
Tips \& Tricks - Univariate Data 129
New columns as functions of old 129
Simulating Dice 129
Simulating Random Variables 130
The Stats Aplet - Bivariate Data 132
Uni vs. Bi-variate data 132
Clearing data 132
Entering data as ordered pairs 133
Adjusting the symbols used to plot points 133
The cursor 133
Sorting paired columns 134
Specifying the fit model 134
Multiple data sets 134
Choosing from available fit models 135
The User Defined model 135
Connected data 136
Two Variable Statistics. 137
Showing the line of best fit 138
Predicting using PREDY 140
Predicting using the PLOT view 140
Relerr as a measure of non-linear fit 141
Tips \& Tricks - Bivariate Data 143
New columns as functions of old 143
Using values from ETiTE in calculations 143
Obtaining coefficients from the fit model 145
Finding Fit Coefficients 145
Correct interpretation of the PREDX function 146
Assigning rank orders to sets of data 147
Using Stats to find equations from point data 148
The Inference aplet 150
Using the Chi2 test on a frequency table 150
Hypothesis test: T-Test $1-\mu$ 151
Confidence interval: $T-\operatorname{lnt} 1-\mu$ 153
Hypothesis test: T-Test $\mu_{1}-\mu_{2}$ 154
Hypothesis test: Z-Test $1-\mu$ 156
Tips \& Tricks - Inference 158
Importing from a frequency table 158
The Finance aplet 160
Parameters 160
Straightforward compound interest 161
Annuity 162
Loan calculations 162
Amortization 163
The Quad Explorer teaching aplet 164
Objectives 164
Choosing the level 164
GRAPH mode 164
SYMB mode 165
Self test mode 166
The Trig Explorer teaching aplet 167
Objectives 167
SIN vs. COS 167
SYMB vs. GRPH mode 167
Using Matrices on the hp 39g+ 170
The MATRIX Catalog 170
Matrix calculations in the HOME view 171
Solving a system of equations 172
Finding an inverse matrix 174
The dot product 175
Using Lists on the hp 39g+ 176
The list variables 176
Operations on lists 176
Statistical columns as lists 176
List functions 177
Editing a list 177
Operations on elements 177
Using the Notepad Catalog 178
Aplet notes vs. independent notes 178
Independent Notes and the Notepad Catalog 179
Transferring notes using IR 180
Editing software 180
Software 181
For the hp 38g, hp 39g \& hp 40g 181
For the hp 39g+ 181
Creating a Note 182
Locking ALPHA mode 182
The CHARS view 183
Corrupting notes 183
Using the aplet Sketchpad 184
Adding text to a sketch 184
The DRAW menu 185
DOT+ 185
LINE 185
BOX 185
CIRCLE 186
Cut and paste (sort of...) 186
Capturing the PLOT screen 187
Using, Copying \& Creating aplets 189
Creating a copy of a Standard aplet. 190
Copying and adding to the Function aplet 190
Copying and adding to the Stats aplet 191
Some examples of saved aplets 192
The Triangles aplet 192
The Prob. Distributions aplet 192
The Transformer aplet 194
Copying from hp 39g+ to $\mathrm{hp} 39 \mathrm{~g}+$ via the infra-red link 197
The infra-red port 197
Time out. 199
Attached programs 199
Downloading aplets from the Internet 200
Finding aplets 200
Organizing your collection 201
Software for the hp 38g, hp $39 \mathrm{~g} \& \mathrm{hp} 40 \mathrm{~g}$ 202
Software for the hp 39g+ 203
The HPGComm Connectivity Program 204
Deleting downloaded aplets from the calculator 207
Saving notes, aplets and sketches via the Connectivity Kit 208
Capturing screens using the Connectivity Kit 210
Editing Notes with the Aplet Development Kit 211
Programming the hp 39g+ 212
The design process 212
An overview 212
Choosing the parent aplet 212
Naming conventions 213
Planning the VIEWS menu 214
The SETVIEWS command 214
Special entries in the SETVIEWS command 216
The 'Start' entry 217
Example aplet \#1 217
Example aplet \#2 222
Example aplet \#3 224
Example aplet \#4 226
Programming Commands 233
The Aplet commands 233
CHECK \& UNCHECK 233
SELECT 233
SETVIEWS 234
The Branch commands 234
IF THEN [ELSE]END 234
CASE 234
IFFERR THEN [ELSE] END 234
RUN 235
STOP 235
The Drawing commands 235
ARC 235
BOX 235
ERASE 236
FREEZE 236
LINE 236
PIXON and PIXOFF 236
TLINE 236
The Graphics commands 237
The Loop commands 237
FOR <var> = <start> TO <end> [STEP] <statements> END 237
DO UNTIL 237
WHILE REPEAT 237
BREAK 238
The Matrix commands 238
EDITMAT 238
REDIM 238
The Print commands 239
PRDISPLAY 239
PRHISTORY 239
PRVAR 239
The Prompt commands 240
BEEP 240
CHOOSE 240
DISP 241
DISPXY 241
DISPTIME 241
GETKEY 241
INPUT 242
MSGBOX 242
PROMPT 242
WAIT 242
The MATH menu functions 243
The 'Real' group of functions 246
CEILING 246
DEG \rightarrow RAD 246
FLOOR 246
FNROOT 247
FRAC 247
HMS \rightarrow 248
\rightarrow HMS 248
INT. 249
MANT 249
MAX 249
MIN 250
MOD 250
\% 250
\%CHANGE 251
\%TOTAL 251
RAD \rightarrow DEG 251
ROUND 252
SIGN 252
TRUNCATE 253
XPON 253
The 'Stat-Two' group of functions 254
PREDY 254
PREDX 254
The 'Symbolic' group of functions 255
The = 'function' 255
ISOLATE 255
LINEAR? 256
QUAD 256
QUOTE 257
The | function 258
The 'Tests' group of functions 259
The 'Trigonometric' \& 'Hyperbolic' groups of functions 259
COT, SEC etc 259
EXP 260
ALOG 260
EXPM1 260
LNP1 261
The 'Calculus' group of functions 261
The 'Complex' group of functions 262
ABS 263
SIGN 263
ARG 264
CONJ 264
IM \& RE 264
The 'List' group of functions 265
CONCAT 265
Δ LIST 266
MAKELIST 266
π LIST 267
POS 267
SIZE. 268
ELIST 268
REVERSE 268
SORT 268
The 'Loop' group of functions 269
ITERATE 269
RECURSE 270
Σ (SUMMATION) 270
The 'Matrix' group of functions 271
COLNORM 271
COND 271
CROSS 271
DET 272
DOT 272
EIGENVAL 272
EIGENVV 272
IDENTMAT 272
INVERSE 273
LQ 273
LSQ 274
LU 274
MAKEMAT 274
QR 274
RANK 274
ROWNORM 274
RREF 274
SCHUR. 275
SIZE. 275
SPECNORM 275
SPECRAD 275
SVD 275
SVL 275
TRACE 276
TRN 276
The 'Polynomial' group of functions 277
POLYCOEF 277
POLYEVAL 277
POLYFORM 278
POLYROOT 279
The 'Probability' group of functions 280
COMB 280
The! function 280
PERM 281
RANDOM 281
RANDSEED 281
UTPN 282
UTPC 283
UTPF 283
UTPT 283
Appendix A: Worked Examples 284
Finding the intercepts of a quadratic 284
Method 1 - Using the QUAD function in HOME 284
Method 2 - Using the Function aplet. 284
Method 3 - Using the POLYROOT function 285
Finding complex solutions to a complex equation 285
Method 1 - Using the QUAD function 285
Method 2 - Using POLYROOT 285
Finding critical points and graphing a polynomial 286
Solving simultaneous equations. 288
Method 1 - Graphing the lines 288
Second method - using a matrix 288
Third method - using the 3×3 Solver aplet 289
Expanding polynomials 290
Exponential growth 291
Solution of matrix equations 293
Inconsistent systems of equations 294
Using the RREF function 294
Finding complex roots 295
Analyzing vector motion and collisions 296
Circular Motion and the Dot Product 297
Inference testing using the Chi ${ }^{2}$ test 299
Appendix B: Teaching Calculus with an hp 39g+ 301
Investigating $y=x^{n}$ for \mathbf{n} an integer 301
Domains and Composite Functions 302
Gradient at a Point 303
Gradient Function 304
The Chain Rule 305
Optimization 305
Area Under Curves 306
Fields of Slopes and Curve Families 306
Inequalities 307
Rectilinear Motion 307
Limits 307
Piecewise Defined Functions 308
Sequences and Series 308
Transformations of Graphs 309
Appendix C: The hp 40 g \& its CAS 310
Introduction 310
What is a CAS? 310
What is the difference between the hp $39 \mathrm{~g}, \mathrm{hp} 40 \mathrm{~g} \& \mathrm{hp} 39 \mathrm{~g}+$? 312
Using the CAS 313
Entering and editing an expression 313
In-line editing mode 316
Erasing, copying, cutting and pasting 316
Cursor mode 317
The CAS HOME History 317
The PUSH and POP commands 318
Pasting to an aplet 319
Evaluating algebraic expressions 320
Using functions in the CAS 321
E.g. 1 Using LIMIT 321
E.g. 2 Factorizing expressions 322
E.g. 3 Solving equations 323
E.g. 4 Solving simultaneous equations 323
E.g. 5 Solving a simultaneous integration 325
E.g. 6 Defining a user function 327
On-line help 328
Configuring the CAS 329
Tips \& Tricks - CAS 330

Notice

REGISTER YOUR PRODUCT AT: www.register.hp.com

THIS MANUAL AND ANY EXAMPLES CONTAINED HEREIN ARE PROVIDED "AS IS" AND ARE SUBJECT TO CHANGE WITHOUT NOTICE. HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
HEWLETT-PACKARD CO. SHALL NOT BE LIABLE FOR ANY ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MANUAL OR THE EXAMPLES CONTAINED HEREIN.
© Copyright 1993-1998, 2005 Hewlett-Packard Development Company, L.P.
Reproduction, adaptation, or translation of this manual is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws.
Hewlett-Packard Company
4995 Murphy Canyon Rd,
Suite 301
San Diego, CA 92123
Acknowledgements
Hewlett-Packard would like to thank the author Colin Croft.
Printing History
Edition 1 February 2004
Edition 2 September 2005

INTRODUCTION

This booklet is intended to help you to master your hp $39 \mathrm{~g}+$ calculator but is also aimed at users of the hp 39 g and hp 40 g . These are very sophisticated calculators, having more capabilities than a mainframe computer of the '70s, so don't expect to come to grips with its abilities in one or two sessions. However, if you persevere you will gain efficiency and confidence.

The majority of readers may only have used a Scientific calculator before so explanations are as complete as possible. However it is not the purpose of this book to teach mathematics so knowledge will be assumed. Those who are already familiar with another brand or type, may find that a quick skim is sufficient, perhaps with detailed reading of the "Tips and Tricks" sections.

The impact these calculators are having on the topics taught and even more, the way they are taught is proving to be profound. The inventiveness and flexibility of teachers of mathematics is being stretched to the limit as we gradually change the face of teaching in the light of these machines.

For those concerned with the impact of a graphical calculator on the 'fundamentals' of mathematics, it should be recalled that the same fears were held for scientific calculators when they were introduced earlier. History has shown that these fears were generally groundless. Students are learning topics in high school that their parents did not cover until university years. In particular, the scientific calculator proved to be a great boon to students of middle to lower ability in mathematics, relieving them of the burden of tedious calculations and allowing them to concentrate on the concepts. This is also the case with graphical calculators.

This manual is not intended to replace the one supplied with the calculator. It fills in the holes, and also provides tips to make your work smother and more confident. Happy calculating.

About the author

Colin Croft is a teacher at St. Hilda's Anglican School for Girls in Perth, Western Australia. Colin has worked extensively with Hewlett Packard on the graphic calculator family of which the hp $39 \mathrm{~g}+$ is a member, and was part of the team which created the hp $39 \mathrm{~g} \& \mathrm{hp} 40 \mathrm{~g}$ in 2000 . He maintains an extensive website of material for the $\mathrm{hp} 39 \mathrm{~g} / 40 \mathrm{~g} / 39 \mathrm{~g}+$ series called The HP Home view, at http://www.hphomeview.com.

How to use this Manual

It has been attempted to design this manual to cover the full use of the $\mathrm{hp} 39 \mathrm{~g}+$ calculator. This means explanations which will be useful to anyone from a student who is just beginning to use algebra seriously, to one who is coming to grips with advanced calculus, and also to a teacher who is already familiar with some other brand of graphic calculator.

Readers may encounter one of two difficulties. Firstly, the information in here will be beyond the needs of some readers and secondly, the explanations may be too detailed for more advanced users.

For students who don't yet need the more advanced capabilities, suggestions on which parts of the manual to read are given below. For more advanced users, it is suggested that you read the sections on the Function, Sequence, Statistics, Inference, Finance and Solve aplets, and also read the 'Tips and Tricks' sections which follow many of the chapters.

Early High School

Typical topics covered include...
Solving linear equations, graphing linear equations and possibly simple quadratics, examining number patterns, multiplying polynomials, factoring simple polynomials, calculations involving powers ($x^{2}, x^{3}, \ldots \ldots$.), square roots, cube roots, order of operations, positives and negatives, scientific notation, indices, systems of equations and inequalities, parallel and perpendicular lines, dividing polynomials, solving quadratics, rational expressions and equations.

Suggestions...
Read about the Function aplet in full, ignoring any sections that seem to advanced. Learn about Intersection and Root in the FCH/ menu and make sure you know how the 国国 menu, Autoscale and PLOT SETUP work. Learn to Build Your Own in the NUM view because it lets you find values for rules easily. Learn to use the HOME view for routine calculations, the MODES view, and how to use the calculator's memories. Read about the Solve aplet and how to use it to solve equations. Read about the Statistics aplet and how to use it to find
means and to display histograms. In the MATH menu, read about the functions ROUND, POLYFORM and POLYROOT. Make sure you know how to save and transfer aplets. Learn about the Sketch view and the Notes catalog for a bit of fun.

Pre-Calculus

Typical topics covered include...
Solving complex linear and non-linear simultaneous equations, and trig, exponential \& complex quadratic equations, factoring of any quadratic, use and re-arrangement of formulas, indices, trigonometry, some statistics, absolute value and greatest integer functions, matrices, logarithms and parametric equations.

Suggestions...
Cover all of the material mentioned for high school students. Read the suggestions on how to deal with graphs whose shape you don't know in advance. Learn how to use the Parametric aplet. Your teacher might best advise on which portions of the Statistics aplet will be relevant to you. In the MATH menu, also learn about functions CEILING, ABS and FLOOR, POLYCOEF, and POLYEVAL. Read the section covering the Matrices catalog and the functions DET, RREF, INVERSE, and TRN.

Calculus

Topics covered here will vary according to which course students undertake but there are very few skills covered in this manual which will not be of use at some time. It is suggested that students skim the whole manual, and then re-read it at intervals as material is covered in their courses and they begin to see which parts of the manual are particularly relevant.

Where's the ON button?

Let's begin by looking at the fundamentals - the layout of the keyboard and which are the important keys that are used frequently. The sketch below shows most of the important keys. These are the ones which control the operation of the calculator - others are used to do calculations once the important keys have set up the environment to do it in.

Examples of the effects of each of these keys and many more are shown on the pages that follow.

Some Keyboard Examples

Shown below are snapshots of some typical screens you might see when you press each of the keys shown on the previous page. Exactly what you see depends on which aplet is active at the time.

The aplet used below to illustrate this is the Function aplet, which is used to graph and analyze Cartesian functions. Notice how the meanings of the row of blank screen keys under the screen changes in different views.

The SYMB key - in this case it is set to graph the function $y=x^{3}-x^{2}-7 x+6$.

The PLOT key - used to graph the function.

The NUM key showing a tabular view of the function.

Funiction	CIEKE
Inferente	. 03 SE
Parametric	Q18
Folar	Q18E
Sequence	QkE
	gecmerin

The APLET key is used to choose which aplet is active. There are 10 aplets provided with the calculator and more can be downloaded from the internet.

The MATH key gives access to more than a hundred extra functions, grouped by category. The view shown right is currently showing the Probability section.

Keys \& Notation Conventions

There are a number of types of keys/buttons that are used on the hp $39 \mathrm{~g}+$.

Some essential keys

The basic keys are those that you see on any calculator including scientific ones, such as the numeric operators and the trig keys. Most of these keys have two or more functions.

Take for example the COS key shown left. If you just press the key, you get the COS function. However above left of the key and below right you will see two additional meanings assigned via the SHIFT and ALPHA keys.

All references to keys, whether they need the SHIFT key or not, are written in this typeface: KEY.

The SHIFT key

The SHIFT key gives you the second function for each key. In the case of the COS key, the second function is ACOS, sometimes referred to as arc-cos or $\cos ^{-1}$ or inverse cos. Most keys have these second functions that are obtained via the SHIFT key.

When I want you to use one of these keys that needs to have the SHIFT key pressed first I usually won't say so. It seems to me that you're intelligent enough to work out for yourself when the SHIFT key needs to be pressed.

The ALPHA key

The next modifier key is the ALPHA key．This is used to type alphabetic characters，and these appear in orange just below most keys．

The Screen keys

A special type of key unique to the hp $39 \mathrm{~g}+$ and family is the row of blank keys directly under the screen．These keys change their function depending on what you are doing at the time．The easiest way to see this is to press the APLET key．As you can see right，the functions are listed at the bottom of the screen．All you have to is to press the key under the screen definition you want to use．

APLET	LIEFifiY \％\％
Fınict ima	，GEKE
Iヶf erenioe	． 93 KB
Parametric	（1） $\mathrm{B}^{\text {a }}$
Polar ${ }^{-}$	$0 \times \mathrm{E}$
G®queாロー	GKB
ive［6ESET S0］	SENT EECM ETAFT

All references to keys of this type are shown as images of the label．For example，if I want you to press the key under the SORT label it would be written as EDFIT．Do it now and you＇ll see the screen shown on the right．Notice that the keys have now changed function．Press
 the one under Cilith．

Sometimes pressing a key pops up a menu on the screen as you just saw． You use the up／down arrow keys to move the highlight through the menu and make choices by pressing the ENTER key．Choices that are listed in a menu will usually be written using italics．As an example，I might say to press EDiTT and choose Chronologically．The manual you are given with your calculator uses a different convention．

As mentioned before，the third way a key can be used is to get letters of the alphabet．This is not so that you can write letters to your friends（although you can do that with the Notepad）but so that you can use variables like X and Y or A and B ．The key above the SHIFT key labeled ALPHA is used to type in letters of the alphabet．Lower case letters are obtained by pressing the SHIFT key before the ALPHA key．If you want to type in more than just a single letter，hold down the ALPHA key．Unfortunately，this doesn＇t work for lowercase．

Try this...
If you haven't already, Chith out of the menu from the previous screen. Press the HOME key to see the screen on the right. Yours may not be blank like mine but that doesn't matter.

Press 12 and then press the screen key labeled ETIT. Now press the ALPHA key and then the alphabetic D key (on the XTO key). Finally, press the ENTER key. Your screen should look like mine on the right. You have now stored the value 12 into memory D. Each alpha key can be used as a memory.

You can also use these memories in calculations. Type in the following (not forgetting the ALPHA key before the D).... (3+D)/5 ENTER
The calculator will use the value of 12 stored earlier in D to evaluate the expression (see right). In case you haven't worked it out for yourself, the / symbol
 comes from the divide key (\div) and the * symbol from the multiply key.

More information on memories and detailed information on the HOME view in general is given on pages 45 .

The calculator also comes with a large number of mathematical functions that are very useful. They can all be obtained via menus through the MATH key. Try pressing the MATH key now and you should find your screen looks like the screen shot on the right.

The MATH menu is covered in detail on pages 243 but
 we will have a brief look now.

The left side of the menu lists the categories of functions. As you use the up/down arrows to scroll through the topics, you'll see the actual list on the right change. Move down through the menu until you reach Prob. (short for Probability) and then one step more and you'll find yourself back at Real. Now press the right arrow key and your highlight will move into the
 right hand menu (see above). Move the highlight down through this menu until you reach Round. Press ENTER.

You should now be back HOME, with the function ROUND(entered in the display as shown right. You can also achieve the same effect by using ALPHA to type in the word letter by letter. Some people prefer to do it that way.

Now type in: 4+D/18,3) and press ENTER

As you can see, the effect was to round off the answer of 4666666 .. to 3 decimal places.

There are shortcuts for obtaining things from the MATH
 menu that are covered later (see page 47).

EVERYTHING REVOLVES AROUND APLETS!

A set of "aplets" is provided in the APLET view on the hp $39 \mathrm{~g}+$. This effectively mean that it is not just one calculator but nine (or more), changing capabilities according to which aplet is chosen.

The best way to think of these aplets is as "environments" or "rooms" within which you can work. Although these environments may seem dissimilar at first, they all have things in common, such as that the PLOT key produces graphs, that the SYMB key puts you into a screen used to enter equations and rules, and that the NUM key displays the information in tabular form.

There are ten standard aplets available via the APLET key. More can be created by you or obtained via the Internet (see pages 212 \& 200)

The Function aplet (see page 51)

Provides $f(x)$ style graphs, calculus functions etc. It will not only graph but find intercepts, intersections, areas and turning points.

The Inference aplet (see page 150)

Allows the investigation of inferential statistics via hypothesis testing and confidence intervals. This was not available on the hp 38 g , the original calculator upon which the hp $39 \mathrm{~g}+$ was based.

The Parametric aplet (see page 100)

Handles $x(t), y(t)$ style graphs. Can also be used to help with vector motion.

The Finance aplet (see page 160)

Performs calculations involving time/value of money.

The Polar aplet (see page 106)

Handles $r(\theta)$ style graphs. Quite apart from their mathematical use, they produce some really lovely patterns!

The Quadratic Explorer aplet (see page 164)

This is a teaching aplet, allowing the student to investigate the properties of quadratic graphs.

The Sequence aplet (see page 107)

Handles sequences such as $T_{n}=2 T_{n-1}+3 ; T_{1}=2$ or $T_{n}=2^{n-1}$.
Allows you to explore recursive and non-recursive sequences.

The Solve aplet (see page 113)

Solves equations for you. Given an equation such as $A=2 \pi r(r+h)$ it will solve for any variable if you tell it the values of the others.

The Statistics aplet (see page 122 \& 132)

Handles descriptive statistics really well. Data entry is easy, as is editing. It analyzes univariate and bivariate data, drawing scatter graphs, histograms and box \& whisker graphs.

The Trig Explorer aplet (see page 167)

This is a teaching aplet, allowing the student to investigate the properties of sine and cosine graphs.

The Function aplet is probably the easiest to understand and also the one you will use most often, so we will have a very quick look at this aplet.

The APLET key is used to list all the aplets and start, reset or save them.

hiplet LIEFin	1.463
Folar	$\mathrm{G} \times \mathrm{E}$
Farametric	Q1E
Fuпletian	- EEXE
Iпf こr-	. 66 E
St.gtistics	. 17 FB -
Sive [fESET STAT SERTM	FECDISTART

The SYMB view is used to enter equations.... It can store up to ten functions.

The PLOT view is used to display the function as a graph...

The [国四 key gives access to a number of other useful tools allowing further analysis of the function.

Although these views are superficially different in other aplets, the basic idea is usually similar.

Having said that aplets are best thought of as "working environments", it is equally true that aplets are essentially programs, with the standard ones simply being built into the calculator. This is a programmable calculator, having its own programming language and able to perform quite sophisticated tasks.

Unless you particularly want to learn about the programming language, there is no reason why you should worry about it. The standard aplets will cover all of your normal requirements in mathematics.

However one of the great strengths of the hp 39g+ is its ability to "download" additional aplets from other calculators, from a PC or Mac and from the Internet. See page 200.

A cable and software were provided with your hp $39 \mathrm{~g}+$ which you can use to connect your PC or Mac to your calculator and then download aplets from the computer to the calculator or to save your work to the computer. If you have an hp 38g, hp 39 g or hp 40 g then you need to buy the cable separately.

If you are using an hp 39g+ then the cable connects to the USB port on your computer. If you are using an hp 39 g or an hp 40 g then you will need to purchase the cable and download the software from Hewlett-Packard's website.

More information on this can be found on pages 200-226.

Calculator Tip

Search on the web using the key word "hp 39g" and you will find a variety of sites which contain information and aplets.

Once an aplet is transferred onto any one calculator, transferring it to another takes only seconds using the built in infra-red link at the top of each calculator. This is exactly like the remote control of a VCR, and allows two calculators to talk to each other. In the interests of security in examinations the distance over which they can communicate is limited to about $8-10 \mathrm{~cm}$ (about 3-4 inches). See page 197 for details on this process.

Aplets are available to do many mathematical tasks such as statistical simulations, time series analysis and many tasks called for in calculus, physics and chemistry. There are a number of web sites which offer aplets.

The Hewlett-Packard site is found at...
http://www.hp.com/calculators/
(follow the links to graphical calculators and then to the library of aplets)

In addition to this you should check the site called The HP HOME view which can be found at...
http://www.hphomeview.com
(contains not only aplets and games, but also a huge amount of detailed information on the calculator.)

The entire topic of aplets is discussed in more detail in the chapter entitled "Using, copying \& creating aplets" on page 189.

The HOME view

In addition to these aplets, there is also the HOME view, which can best be thought of as a scratch pad for all the others. This is accessed via the HOME key (just below the APLET key) and is the view in which you will do your routine calculations such as working out 5% of $\$ 85$, or finding $\sqrt{ } 35$. The HOME view is the view that you will most often use, so we will explore that view first.

What is the HOME view?

This is the HOME base for the calculator. All other aplets can be accessed from it and affect it to varying degrees, and all mathematical functions are available in this view. Learn to use this view as efficiently as possible, since a great deal of work will be done here.

We will explore the HOME view in the following order:

1. Exploring the Keyboard
2. Angle and numeric settings
3. Memory management
4. Fractions on the hp $39 \mathrm{~g}+$
5. The HOME History
6. Storing and retrieving memories
7. Referring to other aplets from the HOME view
8. An introduction to the MATH menu
9. Resetting the calculator

Exploring the keyboard

It is worth familiarizing yourself with the mathematical functions available on the keyboard. If we examine them row by row, you will see that they tend to fall into two categories - those which are specific to the use of aplets, and those which are commonly used in mathematical calculations.

The first row of blank keys are context defined. The reason they have no label is that their meaning is redefined in different situations - they are the 'screen keys'. The current meaning of each key is listed in the row of boxes at the bottom of the screen.

A common abbreviation used for these keys is SK1 or SK2 etc (for "screen key 1"). In the PLOT view
 shown above, some of the screen keys are labeled, such as the Hed key. When you press this the row of screen keys labels appear or disappear. To see another view where all the keys are in use, change to the APLET view.

The next two rows of keys and part of the third are mainly aplet related, so we'll deal with them as a group.

The arrow keys on the right are used in most views, usually to move the cursor (a small cross) or the highlight around on the
 screen.

The APLET key is used to choose between the various different aplets available. Everything in the calculator revolves around aplets, which you can think of either as miniature programs or as environments within which you can work.
The hp 39g+ comes with ten standard aplets Finance, Function, Inference, Parametric, Polar, Quadratic Explorer, Sequence, Solve, Statistics and Trig Explorer. Which one you want to work with is chosen via the APLET key.

$$
\begin{aligned}
& \text { Calculator Tip } \\
& \text { The name of the active aplet is shown at the top of the } \\
& \text { screen, as above. It is important to bear this in mind } \\
& \text { because the angle and numeric settings are tied to the } \\
& \text { active aplet. Changing aplets may therefore cause these } \\
& \text { settings to change in HOME too. }
\end{aligned}
$$

See page 35 for more details on this.

In addition to the standard ten, covered in great detail in the chapters following, many more aplets are available from the Internet written by other programmers. Once these are downloaded into your calculator they can also be accessed via the APLET key. For more detail on this type of aplet, see the brief summary later in this section, and the chapter entitled "Programming the hp 39g+" on page 212.

The SYMB, PLOT and NUM keys are used within aplets to move from view to view. In most aplets the PLOT view shows the graph, the SYMB view shows the equations and the NUM view shows the equations in tabular (numeric) format.

The VIEWS key pops up a menu from which you can choose various options. Part of the VIEWS menu for the Function aplet is shown right. See page 92 for more information.

The VIEWS menu is provided for two purposes...

Firstly, within the standard aplets (Function, Sequence, Solve etc.) it provides a list of special views available to enhance the PLOT view.

For example the standard PLOT screen provides a graph, but the VIEWS menu lets you use a split screen such as shown right. Information on the VIEWS menu is given in the chapter dealing with the Function aplet.

In addition to this, the VIEWS key also has a critical role when using aplets which have been downloaded from the Internet. When a programmed aplet is created for the $\mathrm{hp} 39 \mathrm{~g}+$, a menu is provided by the programmer to let you control and use it. This menu is tied to the VIEWS key, replacing the menu normally found on the key. For example, the snapshot shown right is of a VIEWS menu taken from an aplet designed to analyze and graph Time Series data.

The next important key is the HOME key. It allows you to change into the HOME view from wherever you are. Above it is the MODES key, accessed by pressing SHIFT first. Far more detailed information on these two views follows later.

The VARS key is used (mainly by programmers) to access all the different variables stored by the calculator.

Shown right are two views of the VARS screen, the first from the HOME list showing the graphic variables (memories) G1, G2.... and the next from the APLET list showing some of the variables in the set controlling PLOT.

The VARS key is not generally used much, and you may not have followed this explanation. Don't worry. The VARS key is mostly used by programmers who want to produce aplets of their own and is discussed in more detail in the chapter entitled "Programming on the hp 39g+" on page 212. Uses are also detailed in the Function aplet's "Tips and Tricks" section on page 69.

The MATH key next to VARS provides access to a library of mathematical functions. The more common functions have keys of their own, but there is a limit to the number of keys that one can put on a calculator before it takes too long to find the key required.

The MATH menu lists all those functions that would not fit onto the keyboard plus some which also appear on the keyboard. Shown in the screen snapshot above is a small selection of the total list. For a listing of almost all the functions, with examples of their use, see the chapter entitled "The MATH Menu" on page 243.

Most of the keys have another function in light blue above the key. The hp 39g+ gets twice the action from each key by having this second function.

The second function is accessed via the SHIFT key on the left side of the calculator. Although this book will sometimes tell you explicitly to press this key, in most cases it will be assumed that you are intelligent enough to work out for yourself when it is necessary to press it.

The ALPHA key gives alphabetical characters, shown below right of most keys. Pressing SHIFT ALPHA gives lower case. If you press and hold down the ALPHA key you can 'lock' alpha mode but this

ALPHA

 doesn't work for lower case. Many people use this to type in functions by hand rather than using the MATH menu.Calculator Tip
You can use the ALPHA button to type in functions by hand instead of going through the MATH menu. This is often faster.

The SETUP views, above PLOT, SYMB and NUM, are used to customize their respective views. For example, the PLOT SETUP screen controls things
 like axes, labels etc. Their use changes in different aplets, so for more information see the explanations in the chapters dealing with the various aplets, particularly with the Function aplet on page 55.

In particular, the SYMB SETUP key is only used in one place, which is to choose the data model for bivariate statistics in the Statistics aplet. It is not available in the other aplets and trying to access it will result only in a quick flash of an exclamation mark on the screen to say "You've done something wrong!".

Information on the use of the SKETCH and NOTE keys
 (above APLET and VEIWS) can be found in the chapters "Using the Sketchpad" and "Using the Notepad Catalog" on pages 184 \& 178. Briefly, any aplet (except for the Quad \& Trig Explorer aplets) has a note and a sketch associated with it, which are usually blank unless you have added to them.

The main use for them comes with aplets downloaded from the Internet. Instructions for using the aplet are sometimes included with the aplet in note form, and sometimes as an accompanying sketch.

The MODES view (see right) controls the numeric format used in displaying numbers and angles in aplets. At the bottom of the screen you will see that one of the screen keys has been given the function 대옹. Pressing this key pops up a menu of choices from which you can select the option which suits you. The default angle setting is radians.

Calculator Tip
If you don't want to use the menu then, rather than pressing [HDE, highlight the field and then press the ' + ' key repeatedly. This will cycle through the choices without popping up a menu. This can be much faster if the menu has only a few choices.

The choices for 'Number format' are shown on the right. Standard is probably the best choice in most cases, although it can be a little annoying to constantly have 12 significant figures displayed. In Standard mode, very
 large and very small numbers are displayed in scientific notation.

The Fixed, Scientific and Engineering formats all require you to specify how many decimal places to display. The screenshot right shows Fixed 4, which rounds everything off to 4 decimal places. Of course, you can change the 4 to any other
 HHIGLE HEHSUFE: DPGrees HUHEEF FDFFTH: Fixerd
 Title: Hiblite

CHODSE FDFHAT FDF HUFAEEFS [HDDE number you want.

A setting of Scientific notation ensures that any results are displayed in scientific notation. Of course, the calculator's idea of scientific notation may not be the same as yours. Since the calculator has no way of displaying powers as superscripts, a result of 3.203×10^{4} has to be displayed as 3.203 E 4 . The alternative of Engineering notation is very similar to Scientific, except that powers are always displayed as multiples of 3. This is done to allow easy conversion in the Metric system, which also works in multiples of 1000 .

The screens right show the same two numbers displayed as in turn as; Fixed 4, Scientific 4 and Engineering 4.

Calculator Tip
If you have Labe1s turned on when you on a graph then you may end up with axes whose numeric labels are horrible decimals (see below right).

The setting of Fraction can be quite deceptive to use and is discussed in more detail on page 40.

The next alternative in the MODES view of 'Decimal Mark' controls the character which is used as a decimal point. In some countries a comma is used instead of a decimal point.

If you opt to use a comma rather than a full
 stop then any places where a comma would normally be used (such as in lists) will swap to using a full stop. Any functions which might normally have terms separated by a comma will use a full stop instead. For example, $\operatorname{ROUND}(3.456,2)$ will become $\operatorname{ROUND}(3,456.2)$.

Moving back to our tour of the keyboard, the next key is the ENTER key. This is used as an all purpose "l've finished - do your thing!" signal to the calculator. In situations where you would normally press the ' $=$ ' key on most calculators, press the ENTER key instead.

Above the ENTER key is the ANS key. This can be used to retrieve the final value of the last calculation done. An example of this is shown right.

If you are not confident about using brackets, then the ANS key can be quite useful.

For example, you could calculate the value of
$\frac{3-7 \times 2}{2^{2}+5^{3}}$ by using brackets...
.... or you could use the ANS key.

An alternative to using the ANS key is to use the History facility and the KIP function. This is discussed on page 43.

Another important key is the (-) key (shown right).

If you want to calculate the value of (say) $-2-(-9)$ then you must use the (-) key before the 2 and the 9 rather than the subtract key. If you press the subtract key before the 2 instead of the (-) key, then the calculator will enter instead: Ans - 2, meaning, subtract 2 from the previous answer. Similarly, entering 'subtract, subtract 9' instead of 'subtract (-) 9' will give an error message of "Invalid syntax", meaning it does not make mathematical sense to have two subtract signs instead of a subtract of a negative.

The reason for the Ans - 2 is that a subtract cannot start a 'sentence' in mathematics, while a negative sign can. Since the subtract can't come first, the calculator decides that you must have intended to subtract from the previous answer. Hence the sudden appearance of an Ans. This occurs at other times too. One of the most common

The next important key is the CHARS key (above VARS). This key is used to access all of the many characters that are used occasionally but not often enough to bother putting on the keyboard.

Pressing SHIFT CHARS will pop up the screen above right. One of the screen keys is set to be a 'Page Down' key (FitI T), and will give access to two more pages of characters.

These special characters are obtained by pressing the screen key labeled ECHD. You can press ECHI as many times as you need to in order to obtain multiple characters. When you have as many as you need, press the OK key.

The next important key is the DEL key at the top right of the keyboard. This serves as a backspace key when typing in formulas or calculations, erasing the last character typed. If you have used the left/right arrow keys to move around within a line of typing, then the DEL key will delete the character above the cursor. The CLEAR key above DEL can be thought of as a kind of 'super delete' key. For example, if pressing DEL would erase one function only in the SYMB view then CLEAR will erase the whole set.

The remaining keys of LIST, MATRIX, MEMORY, NOTEPAD and PROGRAM have special chapters of their own.

Angle and Numeric settings

It is critical to your efficient use of the hp 39g+ that you understand how the angle and numeric settings work. For those upgrading from the hp 38 g this is particularly important, since the behavior is significantly different.

On the hp 39g+, when you set the angle measure or the numeric format in the MODES view, it applies both to the aplet and to the HOME view. However, this setting applies only to the currently active aplet (the one highlighted in the APLET view). This means that if you change active aplet then these settings may change also, not only for the aplet but in the HOME view too.

For example, suppose you have been performing trig calculations in the HOME view with the Function aplet being currently active, and have set the angle measure to DEG.

If you were to now change to the Solve aplet in order to solve an equation then the settings would revert to those of the Solve aplet; probably be radians unless you had also changed those as well.

Radian measure is the default for all aplets and thus also for HOME unless you change it. Performing the same calculation in HOME would now give a different result (see right).

Although this may seem to be a strange way of doing things, there is actually a very good reason for it. The hp 38 g did not behave this way and it caused a number of users to have difficulties as you'll see on the next page.

Suppose we define a trig function in the Function aplet as shown.

The default setting for the Function aplet is radians, so if we set the axes to extend from $-\pi$ to π, the graph would look as shown right.

In the PLOT view shown, the first positive root has been found (see page 63) as $x=1.0471 \ldots$

On the hp $39 \mathrm{~g}+$, if we now change to the HOME view and perform the calculation shown right, we expect that the answer should be zero, as indeed it is.

However, this is only the case because the angle measures of HOME and the Function aplet agree. The problem was that on the hp 38 g the default setting for the Function aplet was radians, while HOME had a default setting of degrees and its setting was independent of those of the aplet. This meant that a calculation such as the one above would give incorrect results, and caused considerable confusion to some students. It even resulted in users returning their hp 38g to dealers as 'faulty'!

The only drawback of this method is that you might change aplets and forget that it may also change settings. For this reason, the name of the active aplet is shown at the top of the HOME view as a reminder.

On the hp 39g+ you can see that if we turn Labels on and then PLOT, the numeric mode also affects the axis labels.

This setting also applies to the appearance of equations and results displayed using the SHOW command.

Calculator Tip

Under the system used on the HP39+, if you want to work in degrees then you will need to choose that setting in the MODES view and possibly set it again if you change to another aplet. Some people choose to go through and change the setting on all the aplets at once so that they don't have to remember that it might change. However, if you EESET the aplet the default setting will return.

Memory Management

One of the major complaints about the hp 38 g was its memory - mainly the lack of it, but also the inability to control or manage it. This problem has been addressed on the hp $39 \mathrm{~g}+$ in two ways. Firstly, the hp $39 \mathrm{~g}+$ has over ten times the useable memory of the hp 38g. At 232 Kb (vs. only 23 Kb), there are very few users who will come close to filling the hp 39g+. Depending on size, there is enough room for at least fifty aplets, or for over 10,000 data points.

In addition to extra memory, the hp 39g+ supplies a better way to control it through the MEMORY MANAGER view. If you press the MEMORY key you will see the view shown right. Scrolling through it will show you exactly how the available memory is currently being used. The remaining memory, in Kb , is shown at the top right of the screen. This view gives an overview of the memory. For detailed management the WIER key is provided.

Pressing [ㅔㅍㅛ on any entry will take you a relevent screen in which you can delete entries no longer needed.

For example, with the highlight on Aplets, pressing 피뢰 will take you to the APLET view (right), where you can choose to delete or reset any aplets no longer required.

APLET LIEFif	1: ${ }^{\text {a }}$
Curue Frees	1. CKE
Coin Tossing	2.1 KB
St.gistics	. 10k
Statisticss	1.1 KB
St.gtisticse	2.4 KB
	RECD

As you can see in the screen snapshot on the previous page, my calculator has a number of extra aplets. Two of them, Statistics2 and Statistics3 are simply copies of the normal Statistics aplet containing data that I did not want to lose. The top two aplets Curve Area and Coin Tossing are teaching aplets that I have downloaded from the internet.

If you use teaching aplets that you download from the internet via the Connectivity Kit, or which are supplied to you by your teacher via the infra-red link on your hp 39g+, then you need to bear in mind that most of them have 'helper' programs that aid them in performing their tasks. In the screens shown right you can see some of the programs which are attached to these two teaching aplets. The convention which most hp $39 \mathrm{~g}+$ programmers follow is to name these 'helper' programs in a way that associates them clearly with the parent aplet.
 The memory associated with these programs is not included in that shown for the aplet in the APLET view but will not usually be a large amount.

Calculator Tip

The reason for this naming convention for 'helper' programs is that when you delete the parent aplet in the APLET view the 'helper' programs are not automatically deleted with it. You must change to the Program Catalog view and delete them manually after you have finished with the teaching aplet and deleted it in the APLET view. If you don't do this then they will continue to take up memory on the calculator. Even on the hp 39g+ this is not infinite and too many left over programs will eventually cause problems.

As mentioned on the earlier, pressing DIER in the MEMORY MANAGER screen takes you to a relevent view showing greater detail. For example, the Matrices entry right shows 0.1 Kb
 MATRIX CATALOG view which shows exactly where the memory is being used and allows you to delete any or all of the matrices, or you can enter the view in the normal way by pressing SHIFT 4.

The History entry will take you to the HOME view, where pressing SHIFT CLEAR will clear the History.

There are two views, shown right, for which the only access is via the MEMORY MANAGER screen. The first of these, the GRAPHICS MANAGER, shows some memory in use on my calculator due to the screen captures I am performing to show you these views. Yours will probably be empty.

The second of these is the LIBRARY MANAGER, and this will almost certainly be

 empty unless you have games loaded.
Generally, the only aplets which use libraries are those such as games which are written by expert programmers in machine code in order to make them run as fast as possible. These games, available on the internet, are listed in the APLET view along with the normal aplets and when you delete them the associated library is automatically deleted with them, unlike the case of the 'helper' programs.

Calculator Tip

Because of the amount of memory available on the hp 39g+, the Memory View is not one that you will normally need to worry about. It is probably of more interest to programmers.

Fractions on the hp 39g+

Earlier we examined the use of the MODES view, and the meaning of Number Format. We discussed the use of the settings Fixed, Scientific and Engineering, but left the setting of Fraction for later. The Fraction setting can be a little deceptive.

Most calculators have a fraction key, often labeled $a b / c$, that allows you to input, for example, $12 / 3$ as $1 \neg 2 \neg 3$ or something similar. What these calculators usually won't do is allow you to mix fractions and decimals.

On most calculators $12 / 3+3.7$ will give a decimal result - the calculator will not attempt to convert the 3.7 into a fraction. The reason for this is that while some decimals like 0.25 are easy to convert to a fraction, others, such as recurring ones, are not so easy. Most calculators opt for the easy option of switching to a decimal answer in any mixture of fractions and decimals. The makers of the hp 39g+ took a very different approach. Once you select Fraction mode, all numbers become fractions - including any decimals.

The first point to remember is that there is no provision for inputting mixed fractions such as $12 / 3$. Fractions are entered using the divide key and, while the calculator is quite happy
 with improper fractions such as $5 / 3$, it correctly interprets $1 / 2$ /3 as one half divided by 3 and gives a result of $1 / 6$. The solution to this is simply to enter mixed fractions as $(1+2 / 3)$.

Calculator Tip

You need to be careful with brackets or "order of operations" problems may occur, such as $12 / 3 * 1 / 5$ being interpreted as $1+(2 / 3 * 1 / 5)$ rather than as it should be: $(1+2 / 3) * 1 / 5$. When in doubt, use brackets for mixed fractions.

Some examples are... (using Fraction 4 or higher)

1. $\frac{1}{3}+\frac{4}{5}=\frac{17}{15}$
2. $3 \frac{1}{3}-4 \frac{1}{2}=-1 \frac{1}{6}$

The second point to remember involves the method the hp $39 \mathrm{~g}+$ uses when converting decimals to fractions, which is basically to generate (internally and unseen by you) a series of continued fractions which are approximations to the decimal entered. The final fractional approximation chosen for display is the first one found which is 'sufficiently close' to the decimal.

The trap lies in what constitutes 'sufficiently close', and this is determined by the ' 4 ' in Fraction 4. Roughly, the calculator will use the first fraction it finds in its process of approximation which matches the decimal to that number of significant digits.

For example, a setting in the MODES view of...

Fraction 2 changes 0.234 to $\frac{7}{30}$
which is actually $0.2333333 \ldots$
(matching to at least 2 sig. fig.)
Fraction 3 changes 0.234 to $\frac{11}{47}$
which is actually $0.2340425 \ldots$
(matching to at least 3 sig. fig.)

Fraction 4 changes 0.234 to $\frac{117}{500}\left(\right.$ or $\left.\frac{234}{1000}\right)$
which is exactly 0.234
Essentially, the value of ' n ' in 'Fraction n' affects the degree of precision used in converting the decimal to a fraction. As was said earlier, the calculator will use the first fraction it finds in its process of approximation which matches the decimal to that number of significant digits.

The Fraction setting is thus far more powerful than most calculators but can require that you understand what is happening. It should also be clear why a special fraction button was not provided: the 'fractions' are never actually stored or manipulated as
 fractions at all!

As you can see in the screenshot right, a setting of Fraction 4 produces a strange (but actually correct) result for 0.666 , while adding one more 6 (to take the decimal beyond 4 d.p.) will give the desired result of $2 / 3$. In other words, so long as you understand the approach taken by the hp $39 \mathrm{~g}+$ it is capable of producing results which are closer to what was probably intended by the user in entering 0.66666 .

If you want to use this facility to convert decimals to fractions, here are some tips...

- if you are converting a recurring decimal to a fraction, then make sure you include at least one more digit in the decimal than the setting of Fraction in MODES. As you can see in the second screenshot, failing to include enough decimal places does not produce the desired result.
- if you are converting an exact decimal to a fraction, then set a Fraction n value of at least one more than the number of decimal places in the value entered. Both examples right were done at Fraction 6 .

Not understanding the significance of the setting of Fraction can produce some unfortunate effects. For example, at Fraction 2, the value of 123.456 becomes 123 , with the 0.456 dropped entirely.

Similarly, one of the earlier examples at the top of the previous page was $1 / 3+4 / 5=17 / 15$.

If you use a setting of only Fraction 2 to perform this, you will find to your amazement that $1 / 3+4 / 5=8 / 7$, whereas using Fraction 6 gives the correct answer.

The reason for this 'error' is that the $1 / 3$ and $4 / 5$ were converted to decimals and added to give 1.133333.... This was converted back to a fraction to give 8/7 (1.1428..) matching sufficiently closely in Fraction 2 to be accepted.

The HOME History

The HOME page maintains a record of all your calculations called the History. You can re-use any of the calculations or their results in subsequent calculations.

Try this for yourself now. Type in at least four calculations, pressing the ENTER key after each one to tell the calculator to perform the calculation.

You will now be looking at a screen similar to the one on the right (except probably with different calculations).

If you now press the up arrow key, a highlighted bar moves up the screen. When you reach the top of the screen the previous calculations will scroll into view. Pressing SHIFT up-arrow takes the highlight to the top in one movement.

You may have noticed that as soon as the highlight appeared so did two labels at the bottom of the screen. If you now press the screen key under [iPT you will find that the highlighted calculation will be copied on the edit line. This is shown in the screen shot on
 the right.

At this point you can use the left and right arrows and the DEL key to edit the calculation by removing some of the characters and/or adding to it.

For example, in the screenshot right, the calculation of $3 * 2 * \cos (35)$ has been edited to $3 * \cos (35)$.

	4.91491226573
38	
3*406 35	
BTil	[TPTEHINT

Pressing enter will now cause this new calculation to be performed.

Calculator Tip

- Pressing ON during editing will erase the whole line.
- Pressing SHIFT CLEAR erases the whole history. This is worth doing regularly, since the history uses memory that may be needed for other things, even with the immense amount of user memory the hp $39 \mathrm{~g}+$ has.
- You can [DPT calculations and results from any number of different lines in building your new expression.

Next to the [DPT key you will see another screen key labeled key will display an expression the way you would write it on the page rather than in the somewhat difficult to read style that is forced on the calculator when it must show the whole expression on one line. This works anywhere the $\mathrm{EHD}_{\mathrm{W}}$ label appears, not just in HOME. Some examples...

Storing and Retrieving Memories

Each of the alphabetic characters shown in orange below the keys can function as a memory. Some examples of this are shown in the third and fourth examples above where the values of $1,-3$ and -4 are stored into A, B and C and the value of 3 is stored into X. All of this 'storing' of values is done with the kTill key, which is one of the screen keys listed at the bottom of the HOME view. There are ways of obtaining even more memories than these 26 alphabetic ones, such as storing values into a list (see page 176), but 26 is enough for most people.

Once stored into memory, a value can be used in a calculation by typing the letter into the place where you would normally use the value. Typing a letter and pressing ENTER will display memory's contents.

There is an advantage to storing results in memories, particularly if they are long decimals, or if you're going to be re-using the result a number of times.

As an example, we will perform the calculation of $\frac{2+\frac{4 \times(-3)}{5}}{2 \cdot 3-5}$.
We will do this in two stages, calculating the top and bottom of the fraction and storing the results in memories.

Firstly the top of the fraction, storing the result in memory A, then the bottom, storing in B.

And then finally the result...

Referring to other aplets from the HOME view.

Once functions or sequences have been defined in other aplets, they can be referenced in the HOME view.

These functions now become accessible not only from within the HOME view but also within any other aplet also. This is shown by the screen shots below.

The results shown will (of course) depend on your settings in the MODES view.

The reason for the QUOTE $(X-2)$ rather than just $X-2$, is that using $X-2$ would tell the calculator to use the value currently stored in memory X, while QUOTE (X-2) tells it to use the symbol. The QUOTE function is available through the MATH menu under Symbolic (see
 page 257).

This type of work is actually far more easily done in the Function aplet, where QUOTE is not needed and the ETFLL key does a better job. See page 71.

> e.g. 2 Suppose we use the Sequence aplet to define a sequence with $T_{1}=3, T_{2}=1$ and $T_{n}=2 T_{n-1}+T_{n-2}$.

In the HOME view, the sequence values can be referred to as easily as the function values in the previous example.

U1(10)		
[STM]		

An introduction to the MATH Menu

The MATH menu holds all the functions that are not used often enough to be worth a key of their own. There is a very large supply of functions available, many of them extremely powerful, listed in their own chapter later in the book. When you press the MATH key you will
 see the pop up screen shown right. The left hand menu is a list of topics. Scroll through the topics until you find the one you want, then use the right arrow key to move into the list of functions for that topic.

For example:

The function ROUND will round off to a specified number of decimal places.

E.g. round off 145.25667 to 3 decimal places.

- Press the MATH key \& right arrow (\rightarrow) into the Real group of functions.
- Press the ' R ' key (the 9 key) to move to the first of the functions beginning with ' R ', then move down one more function to ROUND. Press ENTER.

- Now finish off the command and press ENTER again to see the result.

See page 243 for a far more detailed look at the Math Menu.

Resetting the calculator

It is probably inevitable as the line between calculators and computers becomes blurred that calculators will inherit one of the more frustrating characteristics of computers: they crash! If you find that the calculator is beginning to behave strangely, or is locking up then there are a number of ways to deal with this.

Calculator Tip

If you are a user of external aplets then you may find that one will stop working with the message "Invalid syntax. Edit program?". There is almost certainly nothing wrong. Press Wi】, try a soft reboot as below, then run the aplet again.

Soft reboot

Pressing ON+SK3 will perform a soft reboot. It is perfectly safe and will not cause any memory loss except that your HOME History will be cleared. Hold down the ON key and, while still holding it down, press the $3^{\text {rd }}$ screen key from the left. The calculator will very briefly display a boot screen and then redisplay the HOME view, with the Function aplet as the active one.

Just on the rare chance that you may find that the calculator locks up so completely that the keyboard will not respond a method of reset is provided which is independent of the keyboard. This should never happen but it is important to know how to deal with it in case it happened during a test or an exam.

Soft reboot (Hardware)

On the back of the calculator is a small hole. Poke a paper clip or a pin into this hole and press gently on the switch inside. To the calculator this is exactly equivalent to a soft reboot as outlined on the previous page. If you do this when the calculator is locked up then the chances are that you will find that the procedure will not only unlock the calculator but retain your data intact.

Hard reboot (with memory wipe)

To completely wipe the calculator's memory press
ON+SK1+SK6. Hold down the ON key and, while still holding it down, press the first and then the last screen keys. Release them in the opposite order. Don't release SK1 and SK6 together - release SK6, then SK1, then ON. This method will always cause complete loss of data. If you find that the screen fills with garbage, or if the calculator's in-built diagnostic routine starts to run, then it is just that you have not released them in the right order. Simply try again.

Calculator Tip

As a last resort, take the batteries out, including the disk shaped back-up battery and wait a few hours. Reinsert the batteries. Make SURE they go in correctly as you can very seriously damage the calculator if you insert batteries the wrong way around.

Summary

1. The up/down arrow key moves the history highlight through the record of previous calculations. When the highlight is visible, the [IPT key can be used to retrieve any earlier results for editing using the left/right arrow keys and the DEL key.
2. Care must be taken to ensure the your idea of order of operations agrees with the calculator's.
For example, $(-5)^{2}$ must be entered as $(-5)^{2}$ rather than as -5^{2}, and $\sqrt{5+4}$ must be entered as $\sqrt{ }(5+4)$ rather than $\sqrt{ } 5+4$.
3. The ANS key can be used to retrieve the results of the calculation immediately preceding the one you're working on. E.g. $\sqrt{ }(5+$ Ans $)$
4. The DEL key can be used to erase single lines in the history. The SHIFT CLEAR key will delete the entire history. Regular clearing will ensure that memory is not gradually eroded.
5. The SHIP key displays a calculation as you would see it written.
6. The MODES view can be used to set the format in which numbers are displayed on the HOME page, and to choose the angle measure which is to be used.
7. Make sure you understand Fraction mode before using it. Remember that the angle and numeric mode settings may change if you change aplets in the APLET view.
8. Numbers are stored in memory using the key labeled FTD. The stored values can then be used by simply putting the letter in the expression in place of the number.
9. You can reboot the calculator if it locks up. Make sure you know how to do this in case it happens during a test or an examination.

For more information on the complete set of mathematical functions available in the HOME view (and anywhere else) see the chapter "The MATH menu" on page 243.

The Function Aplet

The Function aplet is probably the one that you will use most of all. It allows you to:

- graph equations
- find intercepts
- find turning points (maxima/minima)
- find areas under curves
- find areas between curves
- find gradients
- find derivatives algebraically
- find simple integrals algebraically
- evaluate functions at particular values
- graph and evaluate algebraically expressions such as $f(g(x))$ or $f(x+2)$

The first step for any aplet is to choose it in the APLET LIBRARY. Press the APLET key and you will see something similar to the screen on the right. Use the arrow keys to move the highlight up or down until the Function aplet is
 selected. Now, looking at the list of programmable functions at the bottom of the screen, you should see labels of ETHifil and EESET.
 message shown right - press the WES key. The reason for doing this is to clear out any functions that you may have put in there while playing around, and so to make sure that what
 you see will be the same as the screen snapshots.

Now press the STiliT key. When you do, your screen should change so that it appears like the one on the right. This is the SYMB view. Notice the screen title so that you will know where you are (if you didn't already).

Calculator Tip

Pressing ENTER here would have had the same effect. Whenever there is an obvious choice pressing ENTER will usually produce the desired effect.

The X X θ button

Whenever you enter an aplet, one of the keys which usually changes its function is the key labeled $\mathrm{XT} \theta$. As its label suggests, it supplies an X , or a T , or a θ, depending on which aplet you are in. Let's use that key to produce a graph of the quadratic we dealt with in the earlier section on the HOME view.

Using the up/down arrows, move the cursor (if necessary) to the line

$$
F 1(X)=.
$$

Type in:

$$
3 \boxed{\mathrm{XT} \theta}-\mathrm{X}^{2}-5 \mathrm{XT} \mathrm{\theta}-4 \text { ENTER }
$$

This will produce the screen shown on the right. Notice the check/tick mark next to the function $\mathrm{F} 1(\mathrm{X})$. This signifies that this function is to be graphed, so that if you had five functions entered but only wanted numbers 1,3 and 4 graphed, you could simply

${ }^{\prime} F 1(X)=3 \times X 2-5 \times X-4$ FEC F$)=$ $F 3(x)=$ $F 4(x)=$ $\mathrm{F} 5(\mathrm{x})=$
EDIT FCHE X - ensure that only $\mathrm{F} 1(\mathrm{X}), \mathrm{F} 3(\mathrm{X})$ and $\mathrm{F} 4(\mathrm{X})$ were checked.

FCHERing your function

The key that turns the check on or off is a screen key - the one labeled with the FCHER . It is a toggle key - when the check is off it turns it on and when on it turns it off. In some countries a 'check' mark is called a 'tick' mark but the idea is the same.

Try turning the check on and off for function F1(X). Remember, the highlight has to be on the function before the check can be changed. Make sure it's checked when you have finished.

If you now press the NUM key, you will see the screen on the right. It shows the calculated function values for $F 1(X)$, starting at zero and increasing in steps of 0.1

Make sure the highlight is in the X column, and then press 4 and ENTER. You will find that the numbers will now start at 4 instead of zero. It is also
 at times, particularly for trig functions. The simplest way to set the start value and increment is in the NUM SETUP view. This will be covered in detail later (see page 77).

Now try pressing the PLOT key. The graph you'll see will not be a terribly useful one (see right) because the axes will not be set up correctly. We'll look next at how to do this.

One of the easiest ways to set up the axes properly for a function whose shape is not known in advance is to let the calculator suggest a suitable scale. There are a number of ways of doing this. See page 86 for a discussion of ways of finding 'nice' axes.

One method of finding a viable scale is to use the Auto Scale option in the VIEWS menu (below). More information on the VIEWS menu can be found on page 92. Another method is to use the NUM view to investigate the range of values that will be required for the function.

Auto Scale

Press the VIEWS key. Use the arrow keys to scroll down to Auto Scale and press ENTER. The calculator will adjust the y axis in an attempt to fit as much of the graph on to the screen as possible.

Some points to bear in mind;

- the y axis is scaled only on the first function which has a FCHE
- the y axis is scaled for the x axis you have chosen in PLOT SETUP. If you've not chosen wisely then your result will not be good.
- it doesn't choose 'nice' scales such as we would choose (going up in 0.2 's or 5 's or 10 's etc.) so we generally need to tidy up its choice a little.

If you look at the y axis of the graph you've just produced, you'll see that the axis tick marks are so close together that it looks like a solid line! To tidy this up you must change to the PLOT SETUP view. If you look above the PLOT, SYMB and NUM keys you will see the word 'SETUP'. The SETUP view for each of these keys is obtained via the SHIFT key.

See "Tips \& Tricks - Function" on page 69 for more information on how to find good choices for axes. The Auto Scale function is covered in much greater detail on page 96.

The PLOT SETUP view

If you press SHIFT then PLOT you will see something like the view on the right.

The highlight should be on the first value of 'XRng:'. Enter the value -4.

Calculator Tip

Don't use the subtract key to input a negative. You MUST use the negative key labeled (-) which is in the same row as the ENTER key.

Type in 4 for the other 'XRng:' value, then $\mathbf{- 2 0}$ and 20 for the 'YRng:' values. When you've done this use the arrow keys move to 'Ytick:' and change it to 5 .

At the bottom of the screen you will see Res: (short for 'Resolution'). If you highlight it and press the (W) key
 you will see that you have a choice of Faster or More Detail. More Detail should be selected. If you choose Faster then every second dot is plotted instead of every dot. This is quicker but may make some graphs appear less smooth, particularly graphs with steep gradients.

There are two pages to this view (see the Prigl ${ }^{3}$ key at the bottom of the screen). The first page is used to set axes, the second to control certain features of them.

Press the Fition key. You will now be looking at the screen shown above right. Using the arrow keys to move the highlight, make sure that your checks/ticks match the ones in my snapshot. Now press PLOT again. Perfect!

Let's have a look at the meaning of the CHKs (check marks) on the second page of PLOT SETUP. Although they are not used often they can be quite useful and I recommend highly that you use Simult:

The first option Simult: controls whether each graph is drawn separately (one after the other) or whether they are all drawn at the same time, sweeping from left to right on the screen.

My preference is to turn this off. I find that if there are more than two functions defined then drawing them all at the same time can be confusing. Turning off Simult: means that they are drawn one after the other, in the order that they are defined. This is obviously a bit

_SINULT	_Ind. EFDSS
¢ CDNHECT	\#LHEELS
4 ${ }^{\text {ches }}$	_ GFild
LAEEL THE AMESt	
FCHE 4 Price	

The second option Connect: controls whether the separate dots that make up a graph are connected with lines or left as dots.

The third option Axes: controls whether axes are drawn. The fourth Inv.Cross: controls the appearance of the cursor that is moved by the arrow keys. It is best if you try this one yourself to see the effect.

The fifth option Labels: controls whether labels (X, Y and numbers) are put on the axes. The only time this causes problems is if the scale is an odd one, causing the labels to have too many decimal places.

The sixth and last check Grid: causes a grid of dots to be drawn on the screen (see right). The density of the grid is controlled by the values of Xtick and Ytick. This can be quite
 useful.

The default axis settings

The default scale is displayed in the PLOT SETUP view shown right. It may seem a strange choice for axes but it reflects the physical properties of the LCD screen, which is 131 pixels wide by 63 pixels tall. A 'pixel' is a 'picture element' and means a dot on the screen. The default scale means that each dot represents a 'jump' in the scale of 0.1 when
 tracing graphs. The y value is determined by the graph, of course, and has nothing to do with your choice of scale. Once the scale changes, the cursor jumps from dot to dot are often not a useful size. See page 69 for information on choosing 'nice' scales.

The HEAD Bar

If you look at the screen key list at the bottom of the screen you will see only a single entry, labeled 벼NN.

Press the key under it and your screen will change to look like the one above right.

Press it again and the screen will clear completely. Once more and you are back to the original appearance. Try pressing it a few times to get the feel for its behavior. This is what is known as a 'toggle' switch. The Hed key is a triple toggle, cycling through each of the display
 modes shown right. The first default mode is (X, Y) mode, which displays the coordinates of the current cursor position. In any of these modes the up/down arrows move the cursor from function to function, while the left/right arrows move along the currently selected function.

Calculator Tip
Pressing SHIFT right arrow or SHIFT left arrow will jump the cursor directly to the right or left side of the screen.

The Menu Bar functions

In the examples and explanations which follow, the functions and settings used are:

Trace

URACD is quite a useful tool. The dot next to the word means that it is currently switched on. If yours isn't then press the key underneath to turn it on. Leave it on for now.

Press the left arrow 5 or 6 times to see a similar display to that shown right. Pressing up or down arrow moves from function to function.

The order used is not related graph but solely to the order that they are defined in the SYMB view. If it is turned off then the cursor is free to move anywhere on the screen. Try this and then turn it on again.

Defn

Press the key labeled [DEF? (short for Definition). You will find that the equation is now listed at the bottom of the screen.

The up/down arrows will move the cursor from F1(X) to F2(X), with the definition changing as it does so. If Trace is switched off then Defn will not work correctly.

Goto

This function allows you to move directly to a point on the graph without having to trace along the graph. It is very powerful and useful.

Suppose we begin with the cursor at $x=0$ on $\mathrm{F} 1(\mathrm{X})$ as shown right.

Type the value 3 and press ENTER. The cursor will jump straight to the value $x=3$, displaying the (X, Y) coordinates at the bottom of the screen.

A very nice feature of the [ITD key is that it will jump to values which are not on the current screen, or which would be inaccessible for the current scale.

For example, we can jump to the value $x=100$ and see the (X, Y) coordinate displayed, with the cursor positioned at the far right side of the screen.

If the left arrow is now pressed, tracing will resume from the right edge of the screen, in this case at one pixel point back from $x=4$.

Calculator Tip

The [ITD key will also accept calculated values. You could, for example, jump to a value such as $\mathrm{e}^{2}+2$. If you had recently found an intersection, then jumping to a value of Isect would return the cursor to that point. See page 64 for information on Isect.

The Zoom Sub－menu

The next menu key we＇ll examine is 回四 Pressing the key under 国四 pops up a new menu，shown right．

The menu is longer than will show in one screen，so two screen shots have been included to show most of the menu．

The list which follows covers the purpose of each of the ten options shown right．The four extra options which follow these are covered as part of the detailed examination of the VIEWS menu on page 92.

Center

This redraws the graph with proportionally the same scale for each axis but re－centered around the current position of the cursor．If you already have a＇nice＇scale，this will preserve it，while perhaps showing a more interesting section of graph．

In／Out

These two options zoom in or out by adjusting the scales by the factor shown．The default factor is 4×4 but this can be adjusted through the Set Zoom Factor option later in the menu．The most useful settings are either 5×5 or 2×2 as these are more likely to give and preserve ＇nice＇scales．

Box...

This is the most useful of the 젬
 commands. When you choose this option a message will appear at the bottom of the screen The cursor positioned at asking you to Select first corner.

If you use the arrow keys to move the cursor to one corner of a rectangle containing the part of the graph you want to zoom into and then press ENTER, the message will change to Select second corner.

As you move the cursor this time to a position at the diagonally opposite corner of a box, the box will appear on the screen.

Pressing IGK expands the box to fill the screen.

You'll notice that the scale has been disrupted so that the labels are no
 other corner.
 longer very helpful. PLOT SETUP would give better end points for the axes or let you switch off the labels option.

Rather than doing that however, scroll down the option of UnZoom. This option puts the screen back to the way it was before you did the [四

Calculator Tip
Zoom is very handy for allowing you to examine small sections of a graph in detail, but remember Un-Zoom!

X-Zoom In/Out x4 and Y-Zoom In/Out x4

These two options allow you to zoom in (or out) by a factor of 4 on either axis.

The factors can be set using the Set Factors... option, which gives you access to the view shown above right. You will also see a CHK mark next to an option called Recenter. If this is CHKed then the graph will be redrawn after
 zooming in or out with the current position of the cursor as its center.

Changing the x factor is reflected in the the second screen snapshot.

Square

This option changes the vertical scale to proportionally match the horizontal scale so that circles will appear circular rather than elliptical.

Auto Scale, Decimal, Integer and Trig

These four options are duplicates of those found on the VIEWS menu, and are provided in both places simply for convenience. Information on them can be found in the section on the VIEWS menu on pages 92.

The FCN menu

Before continuing, set the axes back to the way we set them at the start of the section on the Menu bar.

Looking at the menu functions again, you will see that the only one we have not yet examined is the one labeled FCH]. This key pops up the Function Tools FCN menu.

Before you use this key, make sure Thfitl is switched on and move the cursor so that it is in roughly the position shown right.

Root
Press the [FTWI key. As you can see on the right, this key gives you access to a number of useful tools. If you leave the highlight on Root (as shown) and press ENTER (or GK) then the cursor will jump to the nearest root or x intercept for the function it is on, starting its
 search at the current position. Try it now.

Notice the message at the bottom of the screen giving the value of the root that was found. To find the other root, you need to move the cursor so that it is closer to the other root than to the present one. In general that means moving it past the turning point.

Calculator Tip
If you are working with a function which has asymptotes then make sure the cursor is positioned on the same side of the asymptote as the root. The internal algorithm used does not seem to cope well with crossing asymptotes.

Intersection

The next function tool in the FCHI menu is Intersection. If you choose this option, then you will be presented with a choice similar to the one in the screen shown right.

Exactly what is in the menu depends on how many functions you have showing. In the case shown here we only have two, so the choice is of finding the intersection of $\mathrm{F} 1(\mathrm{X})$, which is the one the cursor is on, with either the X axis, or the other function F2 (X). The results of
 choosing $\mathrm{F} 2(\mathrm{X})$ are shown right.

Calculator Tip

When you find an intersection or a root the value of the x coordinate is stored in the memory X . If you immediately change to the HOME view and type X and hit ENTER then you can retrieve and use this value. See "Tips and Tricks Function" on page 83 for more detail and examples.

Slope

This gives the numerical value of the derivative at the point of the cursor for the current function.

Calculator Tip

If the value at which you wish to find the slope is not accessible for the current scale then you will need to use the [DTD key to jump to the desired point before choosing Slope. The value is remembered and used in the Slope calculation, despite not being on the current scale. In the same way, choosing Slope immediately after finding a root or intersection will give the slope at the remembered value rather than the nearest dot.

Signed area...

Another very useful tool provided in the FTW menu is the Signed Area... tool. Before we begin to use it, make sure that IRAC is switched on, and that the cursor is on $\mathrm{F} 1(\mathrm{X})$ - the quadratic. The Signed Area... tool is similar to the Box Zoom in that it requires you to indicate the start and end points of the area to be calculated.

Suppose we want to find the definite integral: $\int_{-2}^{3} x^{2}-5 x-4 d x$
Choose FTH and then Signed Area... You will see the message shown right, asking you to choose a starting point.

Press the [ITD key, enter the value -2 and press OK or ENTER. The starting value will then be -2 so press [0K again (or ENTER) to accept it.

Another menu will appear, asking you to indicate what area you wish to calculate. In this case there are only two choices - between $F 1(X)$ and the X axis, or between $F 1(X)$ and F2(X).

If we had defined more functions in the SYMB view then this menu would be longer. In this case we want the area between $\mathrm{F} 1(\mathrm{X})$ and the x axis, so position the highlight as shown and press ENTER.

The graphs will then reappear, with a message requesting that you choose an end point. In the screenshot shown right I have pressed [ITD and entered the value 3 to move to that point directly.

If you now press ENTER again to accept the end point, the hp $39 \mathrm{~g}+$ will calculate the signed area and display the result at the bottom of the screen.

Calculator Tip

It should be clearly understand that although the label at the bottom of the screen is Area it is a little misleading.
What has actually been calculated is the definite integral (right), with 'areas' below the x axis included as negatives. This is why the label on the original menu reads "Signed area" instead of just "Area".

Rather than using the 5 ITD key, an alternative method is to use the tracing facility. The advantage of this is that the 'area' is shown visually as you go by shading, as can be seen right.

The disadvantage of this is that you can only trace to values which are permitted in the scale you are using. As soon as you use ${ }^{[J T I T}$ the shading stops. In this case, due to the scale we chose, if you try to trace to the values $x=-3$ or $x=2$ you will find that they are not accessible so we will need to change scale.

Change to the PLOT SETUP view and change the x axis (only) back to -6.5 to 6.5 , then PLOT again.

Press [सी Area... as before. Use the left/right arrow keys or the [ITD key to move the cursor to $x=-2$. Press ENTER to accept the starting point.

This time, choose the boundary as F2(X) instead of the x axis so that we will be finding the 'area' between curves instead of the area under one. Again, the result will be a signed area (definite integral) not a true area. See
 page 83 for a simple method of finding true areas.

We now need to choose the end point. This time do it by tracing with right arrow to move the cursor. As you do the area will be shaded by the calculator. The current position is shown at the bottom of the screen. When you reach the end point you are looking for, press the OK key and the area will be calculated as before. This is shown right.

To remove the shading, press PLOT again.

Areas between and under curves

If we are wanting to find true areas rather than the 'signed areas' given by a simple definite integral then we must take into account any roots of the function. This process is shown in detail on page 83, as there are certain tricks which can be used to make the process far simpler.

Extremum

The final item in the FCW menu is the Extremum tool. This is used to find relative maxima and minima for the graphs.

Ensure that URACI is switched on and that the cursor is positioned on the cubic $F 2(X)$ in the

 vicinity of the left hand maximum (turning point) as shown right. Press [FUW] and choose Extremum from the menu. You should find that the cursor will jump to the position of the maximum.

Calculator Tip

If your graph has asymptotes then make sure that the cursor is positioned on the side of the asymptote containing the extremum before initiating the process. The internal algorithm used does not cope well with intervening asymptotes.

TIPS \& TRICKS - FUNCTION

Finding a suitable set of axes

This is probably the most frustrating aspect of graphical calculators for many users and there is unfortunately no simple answer. Part of the answer is to know your function. If you know, for example, that your function is hyperbolic then that immediately gives information about what to expect. If you don't have knowledge then here are a few tips:

1. Try just plotting the function on the default axes. You may find that enough of the function is showing to give you a rough idea of how to adjust them to display it better. Remember that ZOOM can work on either axis or on both. See Tip \#4 on the next page.
2. The NUM view can be very helpful. Try changing to NUM SETUP and setting the value of Numstep to 1 , or even 5 or 10 . Now scroll through the NUM view and look at what is happening to the $F(X)$ values. Look for two things.
Firstly, where is the function most active? For what domain on the x axis is it changing fastest? This is likely to be the domain you are most interested in.
Secondly, what is the range? What sort of values will you need to display on the y axis?
Now change to the PLOT SETUP view and set what you think may be appropriate axes. From those you can PLOT and then zoom in or out.
3. If the graph is part of a test or an examination then the wording of the question will often give a clue as to what x axis domain you should work with.
4. I most often use Auto Scale to get a first approximation to a good set of axes. To do this you must choose your x axis domain first so try Tip \#2 above and use your knowledge of what the function might look like.
5. Another possible strategy for graphing which works quite well and, perhaps importantly, always gives 'nice' scales is to use ZOOM.

- Enter your graphs into the SYMB view. Remember that Auto Scale only works on the first ticked graph.
- Press VIEWS and choose Decimal, or press SHIFT CLEAR in the PLOT SETUP view. This will give you the default axes, probably not showing the graph very well.
- Place the cursor so that it is in the center of the area you are most interested in.
- Use the EDIN menu to adjust the view. You may choose first to change the zoom factors to something other than 4×4, and to ensure that Recenter: is FCHERed.

The advantage of doing it this way is that if you zoom in or out by a factor of 2 or 4 or 5 , the cursor jumps will stay at (relatively) nice values allowing you to trace more easily. In this case, the cursor now moves in jumps of 0.05 , which is ideal for most purposes. On the other hand you may not be interested in tracing along the graph.

Composite functions

The Function aplet is capable of dealing with composite functions such as $f(x+2)$ or $f(g(x))$ in its SYMB view.
 this.

For example, if we define $F 1(x)=x^{2}-1$ and $F 2(x)=\sqrt{x}$, then we can use these in our defining of F3, F4. See the screen shot on the left below.

$\checkmark \mathrm{F} 1(\mathrm{X})=\mathrm{K} \mathrm{Z}-1$
$F F(X)=5 \%$
$\checkmark F S C)=F 1(F 2 C X)$
$\checkmark F 4(X)=F 2(F 1(X)$
FFSCX)=F1 (x+2)
EDT F CHE \%

If the highlight is now positioned on each of these in turn, and the ENil key pressed then the substitution is performed.

The result is shown in the upper right hand snapshot and the $\mathrm{F} 4(\mathrm{X})$ function is shown right after pressing SHOW.

$$
F 4(4)=\sqrt{X^{2}-1}
$$

Notice that the calculator is smart enough to realize in F3(X) that $(\sqrt{x})^{2}-1$ is the same as $x-1$, although not, unfortunately, smart enough to keep track of the implications for the domain that $\mathrm{F} 3(\mathrm{X})$ should be defined only for nonnegative x.

There is a limit to this however. If you define $F 1(x)=x^{2}-x-1$ and then $F 2(x)=F 1(x+1)$, then the EWFIL routine will not simplify $(x+1)^{2}-(x+1)-1$ to $x^{2}+x-1$.

On the other hand there is a way to further simplify the expression. If you now EDIT the result and enclose it with the POLYFORM function as shown right (note the final ', X^{\prime}), then highlight it and press EWiLL, the hp $39 \mathrm{~g}+$

$\mathrm{FF} 1(\mathrm{X})=\mathrm{XZ}-\mathrm{X}-1$
FFE (x)=FDLYFDRHC $8+\ldots$ $F 3(X)=$ $F 4(x)=$
FN(C $\left.\mathrm{K}+1)^{2}-(\mathrm{K}+1)-1, \mathrm{Y}\right)+$ will expand the brackets and gather terms.

Calculator Tip

These functions can all be graphed but the speed of graphing is slowed if you don't press EWFiL first. The 39G+ is fast enough that the result can be lived with but the 39G and 40G are usually too slow when graphing un-evaluated composite functions.

Evaluating the function may also hide the domain. For example, if $F 1(X)=X^{2}$ and $F 2(X)=\sqrt{X}$ then $F 3(X)=F 1(F 2(X)$) will show the correct domain of $x \geq 0$ in the NUM view. Pressing ETHiL will destroy this.

Using functions in the HOME view

Once functions have been defined in the SYMB view of the Function aplet, they can be reused in the HOME view (and indeed in any other aplet!).

For example suppose you needed to find some exact points ($\mathrm{x}=0,1,2$ and
3) for a graph of $f(x)=\frac{2 x}{(x-2)}$ when doing a hand sketch of it.

Type its definition into the Function aplet SYMB view, switch to the HOME view and then simply type F1(0) and press ENTER. The function will be evaluated for $x=0$. Similar results can be obtained for F1(1), F1(2) and F1(3). Notice the error message for $x=2$ caused by a divide by
 zero.

Differentiating

There are different approaches that can be taken to differentiating, most of which are best done in the SYMB view of the Function aplet.

The syntax of the differentiation function is:

$$
\partial X(\text { function }),
$$

where function is defined in terms of X.

The function can either be already defined in the SYMB view of the Function aplet, or entered into the brackets as above.

The ∂ symbol most easily obtained by pressing the key labeled $\boldsymbol{d} / \boldsymbol{d} \boldsymbol{x}$. One point to remember is that if you use this function in the HOME view you may not receive the result you expect. If you try this yourself your result will probably not be the same as that shown.

The reason for this is that the result you see is the derivative of $x^{2}-x$ evaluated at whatever value of x happens to be currently in memory. This can be seen more clearly if we store a specific value into the memory X beforehand. In the example shown right, the answer of 3 is
 the value of the derivative $2 x-1$ at the value of $x=2$.

But what of algebraic differentiation? It is possible but not very convenient to do this in the HOME view using a "formal variable" of S1. (..or S2 to S5) The drawback of this is simply the awkwardness of having to work with S1's rather than with X's.

	5
B ($\times 2-\mathrm{X})$	
$351(512-51)$	
	2*51-1
ETIL	

The process is easiest in the SYMB view of Function. When done this way the result is algebraic rather than numeric. The best method is to define your function as F1 and its derivative as F2 (see below)...

...but you can also perform the whole process in one line.

As you can see the calculator's algebraic abilities do not extend to differentiating $f(x)=2^{x}$ as $f^{\prime}(x)=\ln (2) \cdot 2^{x}$, but at least it is numerically correct.

Calculator Tip

Doing your differentiation in the Function aplet is much easier and offers the additional advantage of being able to graph the two functions.

Circular functions

There are two issues that influence the graphing of circular functions, both related to the scale chosen.

The first one, illustrated on the right, causes circles to be ellipses if you don't choose scales for the x and y axes which are 'square' relative to each other. The two graphs above are both of the same function $x^{2}+y^{2}=9$.

FF1 $(\mathrm{X})=\sqrt{(9-X 2)}$ $\checkmark F E(X)=-\sqrt{ }\left(9-\mathrm{Y}^{2}\right)$ FSCX =

The simplest way to deal with this is to use scales which are multiples of the default scales. For example by using $-13 \leq x \leq 13$ and $-6.2 \leq y \leq 6.4$ (scale factor 2). You can also use the 'Square' option on the ZOOM menu.
 This adjusts the y axis so that it is 'square' relative to the x axis chosen.

The second issue is caused by the domain of the circle being undefined for some values. The screen on your calculator is made up of small dots called pixels and is 131 pixels wide
 and 64 pixels high. As was mentioned earlier, this means that each pixel is 0.1 apart on the x and y axes. This can affect your graphs and it becomes particularly obvious with circles because the graph does not exist for the part of the x axis outside the circle. The two screen
 shots right are an example of two images of the same graph $x^{2}+y^{2}=9$ using two slightly different scales. You can see that the second example has missing pieces.

Let's look at the circle $x^{2}+y^{2}=9$ as an example. This circle only exists from -3 to 3 on the x axis and is undefined outside this domain. In order to graph it on the hp $39 \mathrm{~g}+$ you have to rearrange it into two equations of
$F 1(X)=-\Gamma\left(9-X^{2}\right) \quad$ for the top half \&
$F 2(X)=-\digamma\left(9-X^{2}\right)$ for the bottom half.

If you enter these equations and then graph them with the default axes then you get a perfect circle. However, if you change the x axis from the default setting to -6 to 6 and then re-PLOT then part of the circle disappears. This is shown in the snapshot at the start of the question.

The reason for this is that when the calculator draws the graph it does so by 'joining the dots'. For the default scale of -6.5 to 6.5 this is not a problem since the edges of the circle at -3 and 3 fall on a pixel. This means that the last segment of the graph plotted extends is from 2.9 to 3 and the circle reaches right down to the x axis.

However, for the scale of -6 to 6 the pixels are no longer 'nice' values of 0.1. If you try to trace the circle you'll see that the pixels fall on $0,0.0923077$, $0.1846154 \ldots .$. In particular, near $x=3$ the pixel values are 2.953846 and 3.046154. This means that the calculator can't draw anything past 2.953846 because the next value doesn't exist, being outside the circle. This is what causes the gap in the circle. There's nothing to join to past that last point.

The solution is to use scales which allow the end points of your circle to fall on a pixel point. If your circle has an integer radius then this is easily done by starting with the default axes and then ZOOM in or out to show the circle. This will tend to give 'nice' pixel points. If your circle is not centered on the origin then just check/tick the box in the Set Zoom Factors box to Recenter. That will allow you to turn off TRACE, move the cursor closer to the point where you'd like the centre of screen to be and then ZOOM.

Trig functions

If graphing a trig function using radian measure then you should choose a scale which will cause pixel values (screen dots) to fall at convenient points. A good scale to use is provided on the VIEWS menu (see right).

This scale sets each dot to be $\pi / 24$, ensuring

that multiples and most factors of π will fall on dots and thus helping if you want to trace values on the graph.

Ensure the angle measure is set to Radians in the MODES view if you intend to use this scale.

Calculator Tip

Make sure you set angle measure after you have ETilited the aplet, not before, so as to ensure you are setting the correct aplet.

Retaining calculated values

When you find an extremum or an intersection, the point is remembered until you move again even if it is not actually on a value that would normally be accessible for the scale you have chosen.

For example, if you find an intersection and then return to the [FCH menu and choose Slope, the slope calculated will be for the intersection just found rather than for the nearest pixel point. If you have recently found a root then pressing the [IT key and entering the value Root will return the cursor to it.

There are two ways to access these values. The first and simplest is via the value stored in memory X. If you move from PLOT to the HOME view and type X (using ALPHA) then the value it will contain will be the last position of the cursor. If you just found a root or an intersection then this will be the value displayed. The second way is via the reserved words of Root, Extremum, Area, Slope and Isect. Typing any of these reserved words in any situation will retrieve their last calculated values. If a value has not been found yet then they will return zero.

This trick is particularly useful when calculating areas under or between curves. See page 83.

The NUM view revisited

We saw earlier that the NUM view gives a tabular view of the function.

It is possible to manipulate this view through
 the NUM SETUP view.

Firstly, one can change the start value and the step size for the view.

For example, values of 10 and 2 give:

Looking at the NUM SETUP view you will see an entry called NumType: with the default value of Automatic. The only alternative to Automatic is the setting of Build Your Own. Under this setting the NUM view will be empty, waiting for you to enter your own values for X .

Typing in the values of (for example):
3 (ENTER) -2 (ENTER) 5 (ENTER)
... will give...

In this situation the function values are being calculated as you input the X values. This can be quite useful if you are wanting to evaluate the behavior of a function at selected points.

If you now use the NUM SETUP view to switch to Automatic you will find that there is a key at the bottom left of the NUM view. This can be quite useful as a fast way to reset the scale.

Pressing the Endiv key pops up the menu on the right. The first option of In causes the step size to decrease from 0.1 to 0.025 . This is a factor of 4 and is changeable via the NUM SETUP view. I find a zoom factor setting of 2 or 5 to be more useful.

The second option of Out causes the opposite effect, changing the step size upwards by whatever the Zoom Factor is set to.

The Decimal option restores the default settings.
It changes from whatever is showing back to the step size of 0.1 The Integer option on the other hand, changes the scale so the step size is 1.

The Trig option changes the scale so that the step size is $\pi / 24$ exactly. This will obviously be useful when dealing with trigonometric functions.

Integration: The definite integral using the \int function

The situation for integration is very similar to that of differentiation. The difference is that both the HOME view and the Function aplet require the use of a "formal variable" S1. As with differentiation, the results are better in the Function aplet. The \int symbol is obtained via the keyboard.

The syntax of the integration function is:

$$
\int(a, b, \text { function }, X)
$$

where: a and b are the limits of integration
and function is defined in terms of X .

Let's look first at the definite integral...
The screen left shows $\int_{1}^{2} x^{2}+1 d x=3.3333 \ldots$

$$
\text { followed by } \int_{0}^{\ln 2} e^{x} d x=1
$$

It may help you to remember the syntax of the differentiation and integration functions if you realize that they are filled in with values in exactly the same way that they are spoken.
E.g. $\int_{1}^{2} x^{2}+1 d x$ is read as:
"the integral from 1 to 2 of $x^{2}+1 \quad \mathrm{dx}$ "
\& entered: $\quad \int\left(\quad 1,2, X^{2}+1, X\right)$
A similar path was taken with the differentiation function, so that:

$$
\begin{array}{ccc}
\frac{d}{d x}\left[X^{2}\right], \text { which is read as "the derivative } & \text { with respect to } X & \text { of } X^{2 "} \\
\text { and entered } \partial X\left(X^{2}\right): & \partial & X
\end{array}
$$

Integration: The algebraic indefinite integral

Algebraic integration is also possible (for simple functions), in the following fashions:
i. If done in the SYMB view of the Function aplet, then the integration must be done using the symbolic variable S1 (or S2, S3, S4 or S5). If done in this manner then the results are very good, except that there is no constant of integration ' c '.

The screenshot right shows the results of defining $F 1(X)=X^{2}-1$ and then $F 2(X)=\int\left(0, S 1, X^{2}-1, X\right)$, together with the results of the same thing after pressing the Evill key (the result is placed in F3 only for convenience of viewing). All
 that is now necessary is to read ' $-\mathrm{S} 1+\mathrm{S} 1^{\wedge} 3 / 3$ ' as $-x+\frac{x^{3}}{3}$, or as it should be read as $\frac{x^{3}}{3}-x+c$.
ii. If done in the HOME view, then S1 must again be used as the variable of integration.
i.e. $\int x^{2}-1 d x$ is entered as

$$
\int\left(1, S 1, X^{2}-1, X\right) .
$$

This is shown right, together with the results of highlighting the answer and pressing SHDNa. The calculator assumes that X itself may be a function of some other variable and integrates accordingly as a 'partial integration' which, while mathematically correct, is not what most of us want.

The way to simplify this answer to a better form is to highlight it, LIPT it, and press ENTER again, giving the result shown right. This is the result of the calculator performing the substitutions
 implied in the previous expression.

This substitution process has one implication which you need to be wary of and so it is worth examining the process in more detail...

$$
\begin{aligned}
\int_{0}^{S 1} x^{2}-1 d x & =\left[\frac{x^{3}}{3}-x\right]_{x=0}^{x=S 1} \\
& =\left(\frac{S 1^{3}}{3}-S 1\right)-\left(\frac{0^{3}}{3}-0\right) \\
& =\frac{S 1^{3}}{3}-S 1
\end{aligned}
$$

The potential problem lies with the second line, where the substitution of zero results in the second bracket disappearing. This will not always happen.

For example...

$$
\begin{aligned}
\int_{0}^{S 1}(x-2)^{4} d x & =\left[\frac{(x-2)^{5}}{5}\right]_{x=0}^{x=S 1} \\
& =\left(\frac{(S 1-2)^{5}}{5}\right)-\left(\frac{(0-2)^{5}}{5}\right) \\
& =\frac{(S 1-2)^{5}}{5}-6 \cdot 4
\end{aligned}
$$

The final constant of 6.4 comes from substituting zero into the expression and should not be there if we were doing this with the aim of finding an indefinite integral. On the other hand, we all know that the answer should have a constant of integration, so perhaps this extra constant will help you to remember the ' +c '!

In addition to this, there are strict limits to what the hp $39 \mathrm{~g}+$ can integrate. For example, if you try to evaluate $\int \sin ^{2} x \cdot \cos x d x$ using the calculator, it will not be able to do it. Essentially, beyond polynomials forget it.

The hp 40g Computer Algebra System

Owners of the hp 40 g will be aware that it has a CAS which allows it to perform the most complex algebra, including complex integrations, with ease. More information on the CAS can be found in the supplementary appendix on the hp 40 g . See the Table of Contents.

Integration: The definite integral using PLOT variables

As was discussed earlier, when you find roots, intersections, extrema or signed areas in the PLOT view, the results are stored into variables for later use.

For example, if we use FIW] Root to find the x intercept of $f(x)=x^{2}-2$ then the result is stored into a variable called Root, which can be accessed anywhere else. Similar variables called Isect, Area, and Extremum are stored for the other FCH tools.

You can access these names by typing them in using the ALPHA key, or by using the VARS key. Press VARS and you will see a list of the HOME variables.

If you press SK2, labeled HPLET (not the APLET button on the keyboard), then the display changes to show the variables specific to whatever aplet you are currently using. Those shown right are for the Function aplet and the group of Plot FCN variables is shown.

If you look at the screen shot you will see that the Cllil tag is currently selected (showing as AlPl) and this means that when you press OK the name of the variable will be pasted into what ever view you were using when you pressed the VARS key. Pressing the Willla screen key will cause the value of the variable to be pasted instead. There is no effective difference in most situations.

This can be very useful in finding areas, as you will see in the example following.

Suppose we want to find the area between $f(x)=x^{2}-2$ and $g(x)=0.5 x-1$ from $\mathrm{x}=-2$ to the first positive intersection of the two graphs. From the shaded screenshot shown above right it can be seen that to find the area we need to split it into two sections, with the
 boundaries being -2 and the two intersections.

The shortcut here is to use FCH Intersection to find the first intersection, storing the results into memory variable A .

We then do the same thing for the second intersection, storing the result into B.

We can now calculate the area in the HOME view, using $f_{1}-f_{2}$ for the first and $f_{2}-f_{1}$ for the second. Use [ITP to duplicate the first integral and edit it to adjust the functions and limits.

Finally, CDPT the two solutions and add them to give the final answer.

Piecewise defined functions

It is possible to graph piecewise defined functions using the Function aplet, although it involves literally splitting the function into pieces.

For example: $f(x)= \begin{cases}x+3 & ; x<-2 \\ x^{2}-2 & ;-2 \leq x \leq 1 \\ 3-x & ; x \geq 1\end{cases}$
To graph this we need to enter it into the SYMB view as three separate functions:

$$
\begin{aligned}
& F 1(X)=(X+3) /(X<-2) \\
& F 2(X)=\left(X^{2}-2\right) /(X \geq-2 \text { AND } X \leq 1) \\
& F 3(X)=(3-X) /(X \geq 1)
\end{aligned}
$$

Note: AND can be found on the (-) key.

The reason why this works is that the ($X<-2$) and the ($X \geq-2$ AND $X \leq 1$) expressions are evaluated as being either true (which for computers has a value of 1) or false (which has a value of 0).

By dividing by the domain expression we are effectively dividing by 1 inside the range (no effect) or dividing by zero outside the domain, making the function undefined. Since undefined values are not graphed, this produces the desired effect.

‘Nice’ scales

As discussed earlier, the reason for the seemingly strange default scale of -6.5 to 6.5 is to ensure that each dot on the screen is exactly 0.1 apart.

There are other scales, basically multiples of these numbers, that also give nice values if you want to IBACD along the graph. For example, halving each of -6.5 and 6.5 will place the dots 0.05 apart.

To zoom out instead of in simply double the values, producing dots that are 0.2 apart.

A time when 'nice' scales are more important is when you use the Plot-Table option in the VIEWS menu. If you use the default axes you will find that the dots, and hence the table values are no longer 'nice' because of the 3 dots consumed by the line down the middle of
 the screen.

This can be solved by changing the x axis scale to -6.4 to 6.4 , which gives table values of 0.2.

Using -3.2 to 3.2 is even better since it makes the graph 'square' again, with both axes proportional. Another good choice of scale for the Plot-Table view is -8 to 8 , giving table values of 0.25 . Basically any power of 2 is a good choice. Again, adding or subtracting a
 constant from each end of the axes will produce a graph where the y axis is not centred.

Use of brackets in functions

One problem commonly encountered by new users is misinterpretation of brackets. The hp 39g+ will correctly interpret $F 1(X)=X^{2}(X+1)$ as $X^{2 *}(X+1)$ but will not understand $F(X)=X(X+1)$. When used in either Function or Solve, it will result in the error message of "Invalid User Function".

Similarly if you want to use the sum to n terms formula for a GP in the Solve aplet and enter it as $S=A\left(1-R^{\wedge} N\right) /(1-R)$ then you will see a similar message until you change it to read $S=A^{*}\left(1-R^{\wedge}\right) /(1-R)$.

The reason for this apparent 'error' is that all of the built-in functions such as $\operatorname{SIN}(\ldots$.$) and COS(...) and ROUND(....) work with brackets. When the$ calculator encounters $\mathrm{X}(\mathrm{X}+1)$ it interprets this as asking it to evaluate a function called $X(\ldots$.$) at the value X+1$. Since there is no such function it returns the error message that you are trying to use a function that is unknown.

The solution is simple: just remember to put the * sign in when you use letters immediately before a bracket.

Problems when evaluating limits

In evaluating limits to infinity using substitution, problems can be encountered if values are used which are too large.
 (right) the limit appears to be 0.5 , which is correct.

However, if you continue to use larger values then the limit appears to change to 1 (see right). The reason for this is that the value of e^{x} passes the limit of the capacity of the calculator $\left(10^{500}\right)$, and so the top and bottom of the fraction become equal (both at a value of
 10^{500}) instead of the true situation of the bottom being roughly twice the top. This is most likely to happen with limits involving power functions as they will overflow for smaller values of x .

A related effect happens when investigating the behavior of the commonly used calculus limit of $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

Suppose that you wish to use the Function aplet to evaluate what happens to $F 1(X)=(1+1 / X)^{\wedge} X$ by changing to the NUM view and choosing the 'Build Your Own' facility (see right). The convergence towards e can also be seen graphically in the PLOT view but is very
 slow to reach high accuracy.

The problem lies in the fact that the slow convergence will mean that people will often try to graph this function for very large values of x. The first graph on the right shows the graph of this function for the domain of 0 to 100. The second graph shows how instability develops in the domain 0 to 1E11 $\left(1 \times 10^{11}\right)$.

This apparent instability is caused by the

 internal rounding of the calculator. It works to 16 bits accuracy, which means that it can store 12 significant digits (for reasons only of interest to programmers). This means that when you invert a really large number and add it to one, you lose a lot of accuracy.

For example: if $X=2.85 \times 10^{10}$ then $1 / X$ is $2.5087719298 \times 10^{-11}$. When you add 1 to this, the calculator is forced to discard all but the last decimal place. Thus $1+1 / X=1.00000000003$ (rounded off from $1.00000000002508 \ldots$..)

There are naturally a whole range of numbers which will all round off to the same value of 1.00000000003 , so that (for that range of numbers) the expression $(1+1 / X)^{\wedge} X$ is equivalent mathematically (on the HP) to
 (1.00000000003)^X. This produces a short section of an exponential graph, which only looks linear because you don't see enough of it.

Eventually the calculator reaches a value on the x axis which is large enough that it rounds off to a smaller number than 1.00000000003 , which is 1.00000000002 . This produces the sudden drop in the graph as the plot changes from a section of a $1.00000000003^{\wedge} X$ graph to a section of a $1.00000000002^{\wedge} \mathrm{X}$ graph (which has a shallower gradient).

This section is maintained until the next drop, and so on. Finally, at the value $x=2 \times 10^{11}$ the inverted value is so small that $1+1 / X$ becomes exactly 1 and the graph becomes horizontal. Of course this is completely the wrong value!

Although this explanation may be beyond the level of many students it is quite important that they have some understanding of these ideas if they use the calculator to evaluate limits. The solution to all problems of this type is to simply be aware of their existence and to allow for them rather than simply accepting the results shown in the NUM view.

Gradient at a point

This can be introduced via the Function aplet.

In the Function aplet, enter the function being studied into $\mathrm{F} 1(\mathrm{X})$.

To examine the gradient at $x=3$, store 3 into memory A in the HOME view as shown right.

Return to the SYMB view, un-CHK F1 (X) and enter the expression

$$
F 2(X)=(F 1(A+X)-F 1(A)) / X \text { in } F 2(X)
$$

This is the basic differentiation formula with X taking the role of h and A being the point of evaluation.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Change to the NUM SETUP view and change the NumType to "Build Your Own". By entering successively smaller values for X you can now investigate the limit as h tends towards zero.

To investigate the gradient at a different point simply change back to the HOME view, enter a new value into A and then return to the NUM view.

The disadvantage of the previous method is that it is not very visual. An alternative is to use an aplet downloaded from the web.

Finding and accessing polynomial roots

The POLYROOT function can be used to find roots very quickly, but the results are often difficult to see in the HOME view, particularly if they include complex roots. This can be dealt with easily by storing the results to a matrix.

For example, suppose we want to find the roots of $f(x)=x^{3}-3 x^{2}+3$. We will use the POLYROOT function and store the results into M1.

The advantage of this is that you can now view the roots by changing to the Matrix Catalog. and pressing EDIT. See page 170 for more detailed information on matrices.

In addition to this, you can access the roots in the HOME view as shown.

Calculator Tip

This trick is particularly helpful if you are working with complex roots. Not only does it make it easier to re-use them it makes it easier to tell at a glance which are real and which complex.

The VIEWS menu

In addition to the views of PLOT, SYMB and NUM (together with their SETUP views), there is another key which we have so far only used very fleetingly the VIEWS key.

It may seem odd to devote an entire chapter to what might appear to be an inconsequential key. In fact, however, this button is very useful to the effective use of the calculator, and crucial if you intend to use aplets downloaded from the internet.

The contents of the VIEWS menu changes according to which aplet you are currently using. The Function aplet contents are covered here but the others differ in only small ways.

However, aplets downloaded from the Internet will usually have a radically different VIEWS menus created by the person who wrote the

```
ChGOES di:Em゙=t,Er
```

```
Toss coins
```

Toss coins
Show results
Show results
Ghow graph
Ghow graph
St.ar-t

```
St.ar-t
``` program for the aplet. See page 214 for more

Cind DE information on this process if you intend to program the calculator.

The VIEWS key pops up the menu on the right. We have already seen the use of the Auto Scale option (see page 96) and this is probably the one most used. The other options are also very useful at times.

Shown on the right is the graph of \(F 1(X)=X^{2}-1\). If we press the VIEWS key, the menu above will pop up.

\section*{Plot-Detail}

Choosing Plot-Detail from the menu splits the screen into two halves and re-plots the graph in each half. The right hand side can now be

For example a Box zoom shows the result on the right allowing easy comparison of 'before' and 'after' views.

The left hand graph is always the active one, with results \(_\)All the normal function of actions shown on the right. We can now use the left graph again to zoom in on another section of interest, or tools are available except for HID. alternatively, press the key under the \(\mathbf{< - -}\) label. This switches the right hand graph onto the left screen.

Using TRFIC or the FCN menu you can then find or examine points of interest. Alternatively you can zoom in again using another Box zoom.

Any of the normal FCHI tools such as Signed
 Area... or Extremum can be used in this split screen.

\section*{Plot-Table}

The next item on the VIEWS menu is PlotTable. This option plots the graph on the right, with the Numeric view on the right half screen. Using the left/right arrow keys moves the cursor in both the graph and the numeric windows. See page 95 for information on how
 to keep nice scales in the table view. When more than one function defined in the SYMB view, pressing the up or down arrows changes the table focus from one to another. In this case, with only one, it centers the table.

Let us switch now to a graph of the two functions \(F 1(X)=X^{2}-1 \&\)
\(F 2(X)=X^{3}+2 X^{2}-5 X-4\). This shown on the right, using an XRng of -8 to 8 .

Changing to Plot-Table gives the result shown left. As you can see, the scale has been preserved unchanged, although without labels. The table on the right also uses a sensible scale of 025 because of the choice of an \(x\) axis scale of -8 to 8 . Choice of scale in the Plot-Table view is discussed in detail in the

"Tips and Tricks - Nice Scales" immediately following the chapter on the Function aplet.

Looking at the table heading you will see that it currently shows the function F1 (X). The left/right arrow keys move within that function, with the cursor keeping track. Pressing the up/down arrows now not only centers the table highlight but, more importantly switches from
 F1 (X) to F2(X). The \(X\) column will not change.

What makes this view even more useful is that the table keeps its 'nice' scale even while the usual 'FCN' tools are being used. As you can see in the screenshot left, the table is automatically repositioned to show the closest pixel value to that of the extremum found.

The Signed Area... tool is also available in this view and when the cursor is moved the values in the table follow it. Unfortunately, the highlighted value in the table doesn't change as the cursor moves to create the shaded area. For this reason the best strategy is to use the [ITD key to jump to the end point. This means that the area will not be shaded but this should not be a problem.

\section*{Overlay Plot}

Another possibility from the VIEWS menu is Overlay Plot. This option can be used to add another graph over the top of an existing one, without the screen being blanked first as it usually is. As an example, if you have already graphed functions \(\mathrm{F} 1(\mathrm{X})\) through to \(\mathrm{F} 6(\mathrm{X})\) and then add another one in the SYMB view, then you don't really want to have to wait while all the earlier ones are redrawn. If you un-FHER the earlier graphs and then use Overlay Plot for the new one then it will be drawn over the top of the existing ones. Of course the results will not be good if the scales don't match!.

You can even use this to combine different styles of graphs. For example, the screen shot right was produced by drawing a circle in the Parametric aplet and then superimposing the equations \(y=x\) and
\(y=-x\) in the Function aplet. This could be used
 to show, for example, enclosing curves for conic sections.

You can also use this technique to overlay functions on top of statistical graphs.

\section*{Auto Scale}

Auto Scale is an good way to ensure that you get a reasonable picture of the graph if you are not sure in advance of the scale. After using Auto Scale you can then use the PLOT SETUP view to adjust the results.

It is important to understand two points about how Auto Scale works.
1. It works by using the X-axis range that is currently chosen in PLOT SETUP to adjust the Y -axis range to include as much of the graph as possible. It will not adjust the \(x\) axis.
2. Auto Scale is done only for the first graph with a CHE . If there are other graphs and they don't fit the scale then they will not benefit. As you can see in the example shown right, the quadratic shows well but the second graph (a
 cubic) shows only an ascending section. Zooming out would be an option at this stage, as would un-FCHEing the quadratic in the hopes that Auto Scaling the cubic might give better results (unlikely).
3. The resulting y scale is often not a very 'nice' one. You will usually have to adjust it in the PLOT SETUP view to make it look good.

\section*{Decimal, Integer \& Trig}

The next option of Decimal resets the scales so that each pixel (dot on the screen) is exactly 0.1 . The result is an \(X\) scale of \(-6 \cdot 5 \leq x \leq 6 \cdot 5\) and a Y scale of \(-3 \cdot 1 \leq y \leq 3 \cdot 2\). This may not give the best view of the function. Personally I
 don't often use it, as it is generally easier to go to the PLOT SETUP view and press SHIFT CLEAR.

The Integer option is similar to decimal, except that it sets the axes so that each pixel is 1 rather than 0.1 thus giving an \(X\) scale of \(-65 \leq X \leq 65\).

The usual result of this is rather horrible.

The final option of Trig is designed for graphing trig functions. It sets the scale so each pixel is \(\pi / 24\). This means that if you were graphing \(F 1(X)=2 \sin (X)\) then 24 presses of the left or right arrows would move
 you through exactly \(\pi\) and the value would be exactly 2 instead of a horrible decimal.

If you zoom in or out from this, the jumps will still stay relatively nice, particularly since 24 has so many factors. For example, with a zoom factor of 2 , zooming out once would mean each pixel was now \(\pi / 48\), while zooming in would give a pixel jump of \(\pi / 12\).

As you can see, the cursor is nicely at a value of \(\pi / 2\), giving a y value of exactly 1 instead of only very close.

The default axes under the Trig option is \(-2 \pi\) to \(2 \pi\). If you are primarily interested in the first \(2 \pi\) of the graph then simply change Xmin to zero. Alternatively you can move the cursor to \(\pi\) (the middle) and then zoom in.

The example below uses zoom factors of \(2 \times 2\) with Recenter: FCHERed.

\section*{Calculator Tip}

In the graphs above the cursor is at \(x=\pi\). The coordinates at the bottom of the screen should show \(\mathrm{F} 1(\mathrm{X})=0\) but doesn't due to the fact that the value of \(\pi\) stored internally is not (and of course cannot) be exact. The rounding of \(\pi\) in the \(13^{\text {th }}\) decimal place means that the resulting trig values will be 'wrong' in the \(11^{\text {th }}\) to \(15^{\text {th }}\) decimal place depending on the function used.

\section*{Downloaded Aplets from the Internet}

The most powerful feature of the hp 39g+ is that you can download aplets and programs from the internet to help you to learn and to do mathematics.

Two quick examples of aplets that are available are shown here. More are listed in the supplementary appendix on "Teaching Calculus using the hp \(39 \mathrm{~g}+\) ". Notice that in each case the aplet is controlled by a menu. This menu is created by the programmer and 'attached' to the VIEWS button so that it displays in place of the normal menu.

\section*{Curve Areas}

This aplet allows the user to find approximations to the area under a curve by finding either the lower rectangular area, the upper rectangular area, or the trapezoidal area.

The user can choose the end points of the interval, the type of calculation and the number of rectangles to be used. The rectangles are drawn on the screen. introduces the idea of integration to find areas.

\section*{Linear Programming}

This aplet visually solves linear programming problems, finding the vertices of the feasible region and the max/min of an objective function. The final stage of finding the vertices is a bit slow on an hp 39g but more acceptable on an hp 39g+.

\section*{The Parametric Aplet}

This aplet is used to graph functions where x and y are both functions of a third independent variable \(t\). It is generally very similar to the Function aplet and so we will look mainly at the way it differs.

An example of a graph from this aplet is:
\[
\left.\begin{array}{l}
x(t)=5 \cos (t) \\
y(t)=3 \sin (3 t)
\end{array}\right\} 0 \leq t \leq 2 \pi \quad \text { which gives: }
\]

Although it you can graph equations of this
 type, only some of the usual PLOT tools are present. As you can see in the screen shot above, the FIH key is not shown, meaning that none of its tools are available. Thinking about the nature of these equations will tell you why.

As usual the first step is to choose it in the Aplet Library. Press the APLET key, highlight Parametric and press EThilit. If you wish to ensure that you see the same thing as the examples following then press the EESET button before pressing ETHFTI.

As with the Function aplet, this aplet begins in the SYMB view by allowing you to enter functions, but the functions are paired. Each function consists of a function in T for X and another for Y .

Looking at the PLOT SETUP view, you will see that we now have to enter a range for T as well as the usual ranges for X and Y . It is crucial to understand the different effect of the \(T\) range to that of the X and Y .

Calculator Tip
The default setting for TStep is 0.1 . In my experience this is too large and can result in graphs that are not sufficiently smooth. It is worth developing the habit of changing it to 0.05 .

\section*{The effect of TRng}

The \(X\) and \(Y\) ranges control the lengths of the axes. They determine how much of the function, when drawn, that you will be able to see. For example...
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{TSTEP: - 0.5} \\
\hline \multicolumn{5}{|l|}{XFWG: - 10 - 16} \\
\hline \multicolumn{5}{|l|}{TFiNG: - 6} \\
\hline \multicolumn{5}{|l|}{} \\
\hline E[D] & & Prige & & \\
\hline
\end{tabular}
gives a graph of:

gives a graph of:

Notice that in both cases, IRACI is on and shows the T value, followed by an ordered pair giving (X,Y). Unlike XRng \& YRng, the effect of TRng is to decide how much of the graph is drawn at all, not how much is displayed of the total picture.

For example...

gives a graph of:

above, changing the T range from \(0 \leq t \leq 2 \pi\) to \(0 \leq t \leq 5\) gives a graph that appears only partially drawn. What constitutes "fully drawn" depends, of course, on the function used.

The value of the parameter TStep controls the jump between successive values of T when evaluating the function for graphing. Any graph is always a series of straight lines, and making TStep too large produces a graph which is not smooth. The example on the right
 shows TStep \(=0.5\) instead of 0.05 .

\section*{Calculator Tip}
- Decreasing TStep beyond a certain point will only slow down the graphing process but not smooth the graph further.
- Since trig functions are often used in parametric equations, one should always be careful that the angle measure chosen in MODES is correct. The default for all aplets is radian measure.

As usual, the NUM view gives a tabular view of the function. In this case there are three columns, since X 1 and Y 1 both derive from T .

As with the Function aplet, it is possible to
 change the starting point and step size of the table, and also to change it into a Build Your Own type of table (see page 77).

\section*{TIPS \& TRICKS - PARAMETRIC EQUATIONS}

\section*{Fun and games}

Apart from the normal mathematical and engineering applications of parametric equations, some interesting graphs are available through this aplet. Three quick examples are given below.

\section*{Example 1}

Try exploring variants of the graph of:
\[
\begin{aligned}
& x(t)=3 \sin 3 t \\
& y(t)=2 \sin 4 t
\end{aligned}
\]

\section*{Example 2}

Try varying the values of \(a\) and \(b\) in the equations:
\[
\begin{aligned}
& x 1(t)=(a+b) \cos (t)-b \cos ((a / b+1) t) \\
& y 1(t)=(a+b) \sin (t)-b \sin ((a / b+1) t)
\end{aligned}
\]

Hint: The example shown uses \(a=4, b=2.5\) and has axes set with TRng of 0 to 31.5 step .2 , XRng of -21.66 to 21.66 and YRng of -12 to 9 . It also has Axes unFCHE'd in PLOT SETUP.

\section*{Vectors}

The Parametric aplet can be used to visually display vector motion in one and two dimensions.

\section*{Example 1}

A particle P is moving in a straight line. Its velocity \(v\) (in \(\mathrm{ms}^{-1}\)) at any time \(t\) (in seconds, \(t>0\)) is given by \(v(t)=2 t^{3}-5 t^{2}+2 t-3\). Illustrate its motion during the first 2.5 seconds.

Enter the motion equation from (v) as \(X(T)\) and enter \(Y(T)=T\). The only purpose of this second equation is to move the particle up the \(y\) axis as it traces out its path, thereby making it easier to view.

Changing to the NUM view lets me scroll through the first three seconds of movement, allowing me to choose a good scale for the \(x\) axis.

I'm interested in the first \(21 / 2\) seconds only, so I'll also restrict TRng to 0 to 2.5 . Using \(Y(T)=T\) for this TRng means the \(y\) values will also range from 0 to 2.5 . Maximizing visibility of this range of values is the reason for setting YRng to be -0.5 to 3 in PLOT SETUP. The range for

The graph makes it plain that it doubles back twice in the first two seconds. The really nice part about this method though is that the motion can be seen on the screen. As the particle slows down near the turning points it does so on the screen. As it accelerates in the
 final section you can see this on the screen too. Obviously this can't be seen on this page, but I recommend you try this for yourself.

\section*{Example 2}

Two ships are traveling according to the vector motions given below, where time is in hours and distance in kilometers.
Illustrate their motion during the first ten hours.
Ship A: \(\quad \tilde{x}_{A}=\binom{-100}{500}+\binom{20}{-30} t\)
Ship B : \(\quad \tilde{x}_{B}=\binom{200}{400}+\binom{-15}{-20} t\)
Enter the equations of motion as shown right.

Now change to the PLOT SETUP view and set the axes to suitable values. Possible values are shown below.

Now press PLOT to see the ships' path appear. As with the previous example, the value of TStep is chosen to allow visible motion. As the graph appears it can be seen that the ships do not collide, even though the final plot may make it appear that they do.

To find the distance between the two ships at any time \(t\), you can enter the equation
\(\mathrm{F} 1(\mathrm{X})=\sqrt{(X 1(X)-X 2(X))^{2}+(Y 1(X)-Y 2(X))^{2}}\) into the Function aplet. Note that the active variable must be an \(\mathbf{X}\) in the Function aplet
 instead of the \(\mathbf{T}\) of the Parametric aplet. Graphing this function will allow you to find its minimum value. In this case the separation is minimized at \(t=8.68\) hrs.

\section*{The Polar Aplet}

This aplet is used to graph functions of the type where the radius \(r\) is a function of the angle \(\theta\) (theta). As with the parametric aplet, it is very similar to the Function aplet and so the space devoted to it here is limited mainly to the way it differs. Some examples of functions of this type, together with their graphs are:

The PLOT SETUP view shows that ranges must be specified not only for \(X\) and \(Y\) but for \(\theta\). The values set for XRange and YRange control the length of the axes. The movement of the cursor follows the increments set for \(\theta\) in \(\theta\) Step regardless of the resulting \(X\) and \(Y\) positions.

The values of \(\theta\) Range and for \(\theta\) Step are critical in controlling the appearance of the graph. The values set for \(\theta\) Range control how much of the graph is drawn, while the values for XRange and YRange only control how much of the graph is displayed on the screen once drawn. \(\theta\) Step controls how smooth the graph is, as did TStep in the Parametric aplet. The default values for \(\theta\) Range are \(0 \leq \theta \leq 2 \pi\) and the default value for \(\theta\) Step is \(\pi / 24\).

The default for \(\theta\) Step often results in graphs which are not very smooth and 0.05 is a better compromise between smoothness \& speed. If you particularly want to use a fraction of \(\pi\) to aid in tracing the graph then try \(\pi / 60\).

If it is important to have a set of axes that are 'square', so that circles do not look oval, then use the default values. If the resulting axes don't show enough of the function, then in or out. The Ellix Square option can also be used to achieve round circles.

\section*{The Sequence Aplet}

This aplet is used to deal with sequences, and indirectly series, in both nonrecursive form (where \(T_{n}\) is a function of \(n\)) and implicit/recursive/iterative form (where \(T_{n}\) is a function of \(T_{n-1}\)).

Examples of these types of sequences are:
(explicit/non-recursive)
\[
\begin{array}{lll}
T_{n}=3 n-1 & \ldots . . & \{2,5,8,11,14, \ldots . .\} \\
T_{n}=n^{2} & \ldots . . & \{1,4,9,16,25, \ldots . .\} \\
T_{n}=2^{n} & \ldots \ldots & \{2,4,8,16,32, \ldots .\}
\end{array}
\]
(implicit/recursive)
\[
\begin{array}{lll}
T_{n}=2 T_{n-1}-1 ; T_{1}=2 & \ldots . & \{2,3,5,9,17, \ldots \ldots\} \\
T_{n}=5-T_{n-1} ; T_{1}=2 & \ldots \ldots & \{2,3,2,3,2, \ldots \ldots\} \\
T_{n}=T_{n-1}+T_{n-2} ; T_{1}=1, T_{2}=1 & \ldots . . & \{1,1,2,3,5,8 \ldots .\}
\end{array}
\]

As with most aplets, the Sequence aplet starts in the SYMB view when you enter formulas. The Sequence aplet uses the terminology \(\mathrm{U}(\mathrm{N})\) rather than the other commonly used \(\mathrm{T}_{\mathrm{n}}\) for its definitions in order to avoid having to use subscripts which would not show up well on
 the screen. All functions of this type are assumed to be defined for the positive integers only -for \(N=1,2,3,4 \ldots\)

Each definition has three entries - U1(1), U1(2) and U1(N) (see above). If the sequence is non-recursive then only the \(U 1(N)\) entry need be filled in, with the other two entries calculated automatically from the definition.

Let's start with a non-recursive sequence of \(T_{n}=2^{n}\). If you type it in
 as shown right (using the XTO button to get N), press ENTER and then watch carefully, you will see the entries for U1(1) and U1 (2) filled in automatically.

As they do, FCHE marks appear on all three, but FCHEing or un-대RIing any one does the same for all three.

There are a number of very convenient extra buttons provided at the bottom of the screen when entering sequences.

Two of these - II and \(\boldsymbol{H}\) - are available as soon as the cursor moves onto the \(U(N)\) line (see right). Pressing either will enter the appropriate text into the sequence definition.

The rest become visible once you have begun to enter the sequence definition.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{TEALIL MEFA \(\$\) isis} \\
\hline \multicolumn{2}{|l|}{U2(1)=} \\
\hline 12(2)= & \\
\hline \multicolumn{2}{|l|}{1236)} \\
\hline \multicolumn{2}{|l|}{U24} \\
\hline & \\
\hline
\end{tabular}

For example, suppose we enter the Fibonacci sequence into U2 by defining \(\mathrm{U} 2(\mathrm{~N})\) as \(\mathrm{U} 2(\mathrm{~N}-1)+\mathrm{U} 2(\mathrm{~N}-2)\). Rather than having to type all of this we can use the buttons provided, pressing:

This is a very convenient feature, and worth remembering. The result...

There is no FCHE mark next to the definition yet, since the sequence is defined recursively and no values have yet been given for U2 (1) and \(U 2\) (2). Type in a value of 1 for both of these and then press the NUM button to switch to the NUM view.

As you can see in the screenshot right, the NUM view shows the actual values in the sequence as a table. If you move the highlight into the U1 and U2 columns, you can press the DEFW button and see the sequence rule. You can experiment for yourself and see the result
 of pressing the EITI button (see next page for an example). The EDTV button is also available as usual, but it is easier to use other methods.

The NUM SETUP view offers more useful features. Change to that view now and change the NumStep value to 10. If you then swap back to the NUM view you will see (as right) that the sequence jumps in steps of 10. In case you don't realize... 2.1475 E 9 is
 'computer speak' for \(2 \cdot 1475 \times 10^{9}\).

Now go back to the NUM SETUP view and change the Automatic setting to Build Your Own by moving the highlight to it and pressing the + key or by using the NUM view and enter the values 1, 10, 50 and 100 into the N column.
\begin{tabular}{|c|c|c|}
\hline H & U1 & 12 \\
\hline 10 & 2 & 1 \\
\hline 10 & 1024 & 55 \\
\hline 510 & 1.13 E 15 & 1. 2EE16 \\
\hline 106 & \(1.27 E 30\) & 3.54E20 \\
\hline \multicolumn{3}{|l|}{12586269025} \\
\hline EDIT & |Elfitimic & \\
\hline
\end{tabular}

You will find that the values for those terms of each sequence will appear in the U1 and U2 columns almost immediately. In case you didn't realize, the reason for the larger text is that I have used the EIG button.

Due to the type of problems one is usually trying to solve with sequences, the NUM view rather than the PLOT view is often more useful in this aplet,
 but let's have a look at the PLOT view anyway. Two types of plots are available, the default being Stairstep.

Change to the PLOT SETUP view and ensure that the setup view is the same as that shown in the two screens above right. Then change to the PLOT view and you should see a graph similar to the one shown below right. The second type of graph is the Cobweb.

\section*{Tips \& Tricks - Sequences \& Series}

Defining a generalized GP and the sum to \(n\) terms.

The advantage of this method is that you now need only change the values of \(A\) and \(R\) in the HOME view to change the sequence.

Defining a series (sum to n terms of a sequence) is fairly straightforward using a
 similar method.
Note the reference to U 1 in the definition of U 2 .
Once U 2 is defined in this way you can change both \(\mathrm{U} 1 \& \mathrm{U} 2\). by simply storing new values into \(A\) and \(R\).

\section*{Solving sequence problems}

Questions like "What term is the first to be greater than 10000 ?" or "When does \(S_{n}\) first exceed 10000 ?" can be answered in the NUM view.

Simply move into the N column, make an inspired guess as to the term you require and type it in. The table jumps to that value.

For example, in answer to the first question, we estimate \(\mathrm{N}=35\). However we find that U1(35) is far too large. By successive guesses, we find that \(T_{15}\) is the one we were seeking. The second problem is as easily solved in this way.

Population type problems are also easily dealt with in this way.

For example, "A population of mice numbers 5600 and is growing at a rate of \(12.5 \%\) per month. How long will it be until it numbers more than one million?"

Pressing CLEAR (above DEL) clears out the existing expressions, and I can enter my formula. The two values of 5600 and 6300 are automatically calculated. All we need do now is switch to the Numeric view to find, with some experimenting, that \(U 1\) (46) is the first to exceed one million.

It is also possible to answer these questions in the Solve aplet. For example if we use the Sequence aplet to define \(\mathrm{U1}(\mathrm{~N})=2 \wedge(\mathrm{~N}-1)\) as before, then we can change to the Solve aplet and enter into E 1 the equation \(\mathrm{U} 1(\mathrm{~N})=10000\), change to the NUM view and press 相畳 and obtain an answer of 14.29 . This means, of course that \(\mathrm{N}=15\) is the first term exceeding 10000.

The reason why we did not use \(E 1(N)>10000\) is that the Solve aplet is unable to deal with inequalities even though no error message is given if you try.

\section*{Modeling loans}

I need to see the progress of a loan of \(\$ 10,000\) at a compound interest of 5.5\% p.a., starting Jan. 1 1995, with a quarterly repayment rate of \(\$ 175\). Set up U1 and U2 as shown above.

You can now follow the progress of the loan, with U1 containing time and U2 the amount owing at the start of each time period, showing it is repaid during the first quarter of 2023.

- 11 (1) =1995
\(\mathrm{O}(2)=1995.25\)
\(\because 1(\mathrm{H})=\| 1(\mathrm{H}-1)+25\)
DEC1)=
\(\mathrm{DZ}(2)=8\)

\(0102(2)=16060 \% 1.0137-175\)
\(\frac{U E(N)=U Z(4-1) * 1.0137-175}{U S(1)=}\)
LBC1)=
US(2)
ENIT \(\mid\) FCH

\section*{The Solve Aplet}

This aplet will probably rival the Function aplet as your 'most used' tool. It solves equations, finds zeros of expressions involving multiple variables, and even involving derivatives and integrals.

To ensure that we are using the same terminology, let's define our terms first.
An equation includes an = sign, and can usually be solved:
\(\left.\begin{array}{ll} & y=x^{2} \\ \text { eg. } & v^{2}=u^{2}-2 a d \\ & \frac{b}{c}+1=\frac{a+3}{d} \\ & x^{2}-6 x+5=0\end{array}\right\}\)...are all equations.

An expression, on the other hand, does not contain an = sign. It can be evaluated or rearranged but not solved. When you enter an expression into the Solve aplet it internally puts an" \(=0\) " onto the end so as to convert it into an equation which can be solved.
eg. \(\left.\begin{array}{l}x^{2}-4 \\ \frac{b-1}{c}+1 \\ x^{2}-6 x+5\end{array}\right\} \ldots\) are all expressions.

Let's start by looking at the equation \(v^{2}=u^{2}-2 a d\). This equation gives the final velocity \((v)\) of a object as a function of the initial velocity (\(u\)), the acceleration acting on it
 (a) and the distance traveled (d).

Suppose you had the problem:
"What acceleration is needed to increase the speed of a car from \(16.67 \mathrm{~m} / \mathrm{s}\) (60 kph or \(\sim 38 \mathrm{mph}\)) to \(27.78 \mathrm{~m} / \mathrm{s}(100 \mathrm{kph}\) or 60 mph\()\) in a distance of \(100 \mathrm{~m}(\sim 110 \mathrm{yd})\) ?"

We'll assume that you have already entered the equation into E2 (as above) and have made sure that it is \(\boldsymbol{\Psi} \mathrm{CH} \boldsymbol{H}\) ed.

If you press NUM to change to the NUM view, you will see something similar to the screen on the right. What values are showing on your screen will depend on what happens to be in the memories \(\mathrm{V}, \mathrm{U}, \mathrm{A}\) and D at the time. Pressing SHIFT CLEAR will zero all values.

Move the highlight to V and enter the value 27.78 , then to U and enter 16.67 and finally to D and enter 100.

Now move the highlight back to A (the value you're trying to find) and press the SILTE button. You should find that you obtain the answer to our problem of \(2.47 \mathrm{~m} / \mathrm{s}^{2}\).

When the ETLTE process has finished, you can obtain a report on it by pressing the INFD button. The result in this case may not seem very informative but there is more about these
 messages on page114.

Our first example was fairly simple because there was only one solution so it did not much matter where we began looking for it. When there is more than one possible answer you are required to supply an initial estimate or guess. The Solve aplet will then try to find a solution which is 'near' to the estimate.

\section*{Example 1}

The volume of a cylinder is given by \(V=2 \pi r(r+h)\). Find the radius of a cylinder which has a volume of 1 liter and a height of 10 cm .

Enter the equation into E1 as shown right. When you are entering the equation, ensure that you put a * sign between the R and the bracket. See page 87 for more information on this.

Change to the NUM view and enter the known values, remembering that 1 liter \(=1000 \mathrm{~cm}^{3}\). Position the highlight over R, enter a positive value as your estimate, and press EDLTI to find the solution shown right of 8.57 cm . The equation is a quadratic in R which means two
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{SILPE RUIFIEFIIC TIEFM*} \\
\hline \multicolumn{4}{|l|}{v: 1619} \\
\hline \multicolumn{4}{|l|}{F: B, 5rEBTEL4255} \\
\hline \multicolumn{4}{|l|}{H: 16} \\
\hline Entef Yhlue & - \({ }^{\text {f }}\) & PFESS & S0L \\
\hline EDIT |TAFI & & & \\
\hline
\end{tabular} solutions are possible. If you enter an initial estimate of -10 you will obtain the negative solution, which is physically invalid in this case.

\section*{Example 2}

If \(f(x)=x^{3}-2 x^{2}-5 x+2\) find all values of x for which \(f(x)=1\).

Although you may have a clear picture in your mind and can provide Solve with the estimates it needs, l'll assume that you would find it helpful to see a graph first.

It is also possible to solve this in the Function aplet, which offers more powerful tools. The PLOT view in the Solve aplet, although powerful, can be deceptive if you don't understand it and I sometimes find it easier to work in the Function aplet. In this case we will
 continue to work in Solve.

In the SYMB view, enter the equation \(Y=X \wedge 3-2 X^{2}-5 X+2\) into \(E 1\).

In the NUM view, enter the known value of \(\mathrm{Y}=1\), ensure that the highlight is on X , making it the
 active variable, and then press PLOT.

The PLOT view shows two curves. The horizontal line is the left side of the equation which, when the known value of \(Y=1\) is substituted, forms a constant straight line. The other curve is the right hand side of the equation which, since \(X\) is the active variable, forms a cubic. In this case the scale chosen is appropriate but this will not always be the case and some adjustment might be required in the PLOT SETUP view.

We require values where the two curves intersect. Using the arrow keys, move the cursor near to the first intersection point. I found (see right) that -1.6 seemed to be a
 good approximation. Now change back to the NUM view and you will find that this approximation has been carried back as the initial estimate. Press EDITI to find the true value.

Repeat the process of obtaining an estimate in the PLOT view and refining it in the NUM view to find the other two solutions. See page 118 for information on the effect of the active variable on what you see in the PLOT view.

\section*{Calculator Tip}

The Solve aplet is not able to cope with inequalities. Although there is no error message when you use < or >, the answer it supplies is not what you would expect. What is worse is that they are reported in [iF口 as correct!

The Solve aplet can be used in conjunction with any of the functions available through the MATH menu, and can also reference any equations or functions defined in other aplets.

\section*{Example 3}
"Find a so that \(\int_{2}^{a} x^{3}-x d x=4\) "

Set E1 to: \(\int\left(2, A, X^{\wedge} 3-X, X\right)=4\)
In the NUM view, set A to an initial guess of 3 , and position the highlight on A. Ignore \(X\) since it is not really involved except as a temporary variable during the integration. Press EDLTE to obtain an answer (eventually) of 2.4495. The delay is caused by the repeated integrations as the calculator searches for better solutions.

\section*{Example 4}
"Let \(X\) be a random variable, representing the heights of basketball players. If \(X\) is normally distributed, with \(\mu=184 \cdot 5\) and \(\sigma^{2}=105\) then find the height which cuts off the tallest \(5 \%\) of players."

The MATH function for the normal distribution is UTPN (see page 282) which gives the upper-tailed probability.

In the Solve aplet, set E1 to \(\operatorname{UTPN}(184.5,105, X)=0.05\)
Enter the NUM view, make an estimate, and press EILNE to obtain 201.35 cm

\section*{Further reading}

There are many more ways in which the Solve aplet can be used in conjunction with the functions available in the MATH menu. The MATH menu is discussed in detail starting at page 243, with worked examples which often use the Solve aplet.

\section*{A detailed explanation of PLOT in Solve}

The PLOT view in the Solve aplet is a little more complex than most others, since the active variable (\(x, t\), theta etc) changes according to the value for which you are trying to solve.

As an example, we will enter the equation \(A^{*} B^{2}+C=.5 * B\) into E1. Suppose that we know the values of \(A\) and \(C\) but need to find \(B\).

Now change to the NUM view and enter the values shown right. Ensure that the highlight is on B as shown and then press PLOT.

The result is a quadratic intersecting a line and the reason for this lies in how Solve interprets your equation.

When you select B by highlighting it, the calculator substitutes the supplied values into all other variables except B and graphs the left and right sides of the equation as two separate graphs. This may not always be obvious because the substitution may produce graphs which aren't visible on the default scale.

In the graph above you can see from the label on the horizontal axis that the active variable is \(\mathbf{B}\). In this case substitution means that \(A^{*} B^{2}+C=5 * B\) becomes \(0 \cdot 4 B^{2}-1=0 \cdot 5^{*} B\). The left side is quadratic, while the right is linear.

In this case there are clearly two points where the graphs intersect and hence where the left and right sides are equal.

Move the cursor near to the left hand intersection and then change back to the NUM view. When you do so, the approximate value you chose with the cursor is transferred as your first 'guess'.

If we now change the active variable then there is an immediate change in the PLOT view to reflect this.

Change back to the NUM view and restore the variables to the original values, this time leaving the highlight on C .

Since the active variable is now \(C\), substitution of all other values means that \(A^{*} B^{2}+C=.5 * B\) becomes \(0 \cdot 4+C=0 \cdot 5\). In this case both sides are linear and this is shown in the PLOT view. Notice that the axis label is now C. This would have only one solution and there would be no need to supply any particular starting value.

If we duplicate this process for \(A\) then substitution of values means that \(A^{*} B^{2}+C=.5 * B\) becomes \(A-1=0 \cdot 5\). Both sides are still linear, although not the same as before, and this is shown in the PLOT view. Notice that the axis label is now \(A\).
 the PLOT view, move the cursor near to the second intersection and EILTV for that one too.
 find the nearest solution to your guess. Finish by pressing \(\boldsymbol{T H F I}\) to verify that the solution is valid. See page 114 regarding this.

Obviously the next step is to change back to

\section*{The meaning of [LTFD messages}

On pages 115, the values used were \(V=27.78\), \(U=16.67\) and \(D=100\) and we were solving for \(A\).

Thus: \(\quad v^{2}=u^{2}-2 a d\)

became: \((27 \cdot 78)^{2}-(16 \cdot 67)^{2}+2 \times a \times 100=0 \quad\) when substituted.
'Zero' - The calculator tried to find a value of A which made this zero and, in the IWFI message shown above, it is reporting that it succeeded.
'Sign reversal' - also indicates a correct solution, since normally one expects to find an answer of zero at the point where the equation changes from positive to negative (or vice versa). 'Sign reversal' is a report that it couldn't get an answer to 12 significant digits that was precisely zero, just two answers minutely on either side of zero. This might indicate a discontinuity at the point, such as that of a reciprocal graph at \(x=0\), but is more likely to indicate a satisfactory answer.

The only time that you need to worry is when you receive any of the error messages. These are:
'Extremum' - it found a minimum, but could not reach zero. Try solving the equation \((x-2)^{2}+4=0\) and you will see this. The smallest value that \((x-2)^{2}+4=0\) can have is 4 at \(\mathrm{x}=2\), so the answer supplied will be very close to this (such as 2.000000001 or 1.999999999). The problem is that unless you check [ifa you may not realize that this is not actually a valid solution.
Calculator Tip
It is critical that students recognize this case since it occurs
quite often when the two sides of the equation (left and
right) come close but do not match. The student must
recognize that the answer is invalid and, preferably, why.
This is a major reason why it is often better to work in
the Function aplet, since it allows you to see clearly
whether or not there is a solution.
'Bad Guess' - the initial estimate you supplied was outside the domain of the function. For example, the equation uses a square root or a logarithm and you began from a value involving a negative.
'Constant?' - no solution was found. The value of the function was the same at every point tested (and wasn't the value you wanted).

\section*{TIPS \& TRICKS - SOLVE}

\section*{Easy problems}

Have you ever thought "There has to be an easier way!" when confronted in a test with something like:

If you're sure there is only one answer to a problem, as there is in this case, then solving it is simply a matter of entering the equation into the SYMB view and solving it.

\section*{Harder problems}

When you know or suspect that there is going to be more than one solution to a problem then the PLOT view can help you to obtain estimates.
For example: \(\frac{2}{x}=\frac{(x+1)}{2}\)
When you plot this you can see that the solutions are near -2 and 15 . If we now switch to the NUM view we can use these as initial guesses. This will give solutions of -
 2.56 and 1.56 .

In this case the problem shown will graph easily on the default PLOT view but this will not always be the case. You may need to adjust the axes in PLOT SETUP. Your teacher may insist on an answer given as a surd, or on showing all working, but even in that case you'll at least be able to check your answer.

\section*{The Stats Aplet - Univariate Data}

One of the major strengths of the hp \(39 \mathrm{~g}+\) is the tools it provides for dealing with statistical data. The Statistics aplet and its companion the Inference aplet provide very powerful yet easy to use tools with which to analyze statistical data.

Unlike most others, the Statistics aplet begins in the NUM view, offering easy input and editing of values, while the SYMB view is reserved for specifying which columns contain data and which ones frequencies, as well as for indicating pairing of columns for bivariate data. If you have not already done

The hp 39g+ treats univariate and bivariate data quite differently and those differences are reflected in the SYMB and PLOT views.
Because of this the Statistics chapter has been
 split into two and univariate data will be dealt with first. On the screen you will see a key labeled either TMiFI or ETHIG. Pressing the key under this label changes from univariate ([TVIFI) to bivariate (ENilia) and back. Make sure the key is showing 1 WiFl before proceeding.

If your NUM view had some data in it, you could press CLEAR (above DEL) and choose All columns. The DEL key is used to delete individual data points, rather than whole
 columns.

Let's use the following set of data and obtain all the usual statistics on it, and also plot a histogram and a box \& whisker graph.
\[
\{2,3,1,0,-2,3,4,2,2,0,6,2,3,1,0,4,1,3,3,2\}
\]

Move the highlight into column C1 and enter the data, pressing the ENTER key after each piece of data.
\begin{tabular}{|c|c|c|c|}
\hline n) C 1 & \(\underline{C}\) & 0.3 & E. 4 \\
\hline & & & \\
\hline ESIT TRE & 30] & 1 & [\(\mathrm{E}_{5}\) \\
\hline
\end{tabular}

Looking at the bottom of the screen you will see a series of tools provided for you. EIIT is not really worth bothering with. It is generally easier just to retype a number than it is to press EDIT and then use the arrow keys and DEL to change it.

The key labeled THE inserts space for a new number by shifting all the numbers down one space. EDFT does exactly what it says... it sorts the data into ascending or descending order. The extra fields in the screen shot right are used with bivariate sorts or frequency
 tables and will be explained in that section of the notes. Press Cillill to stop the sort.
 discussed. The last key labeled ETiTS is the really useful one.

Making sure the highlight is in column C1, press the ETitIS key and you will see the screen shown right. If you use the down arrow, you can scroll down and see the rest of
 the screen (below right).

NOTE: If you get an error message instead of summary statistics, you may have forgotten to F 国国 the aplet.

As you can see in the screens above right, the hp \(39 \mathrm{~g}+\) gives not only the standard statistics that any scientific calculator would give, but also the minimum and maximum values, the median and the upper and lower quartile cutoffs. The mode is not given, but this is easily obtained from the histogram as we will see later.

Let's create a second column of data, and cheat by making all its values double the values in the first column. We can use the HOME view to avoid having to retype the values as follows...

* Press the NUM key to change back to the NUM view. You should find your new column created and ready.

If you now use the ETile key, you will find that you still only see statistics for the first column (H1). The reason for this is that you have not set up the second column in the SYMB view. The default setup is to only recognize column 1.

Change into the SYMB view and edit yours so that it looks like the one on the right. You must make sure that H 2 is पCHEled, because only checked columns will show in the STiTE view.

Note that a screen key is provided to give you the letter C without having to use the ALPHA key.

The stats are now available for both columns of data.

As an alternative to the method used above, you could also have created a 'virtual' column of data by using the SYMB view. Simply enter an expression giving the new column as a function of the old one. Although the 'virtual' column will
 not be displayed in the NUM view, it can now be graphed and analyzed normally.

You may be wondering why the SYMB view is organized around histograms H1, H2 . . H9 rather than simply around the columns C1, C2 . .C9. The reason is that it allows you to easily cope with a frequency table by setting up one column to represent values and another to represent the frequencies. If not using a frequency table, the frequencies are normally set, by default, to 1 as can be seen on the previous page.

Let's set up columns C3 and C4 to represent the table below.
\begin{tabular}{r|r}
\(\mathrm{x}_{\mathrm{i}}\) & freq. \\
\hline 3 & 12 \\
4 & 19 \\
5 & 25 \\
6 & 37 \\
7 & 15 \\
8 & 9
\end{tabular}

Enter the values
\(3,4,5,6,7\) and 8 into C3
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{|c|c}
\(\square\) \\
\hline 1
\end{tabular} & Ce & C. & \(\underline{C}\) \\
\hline \(\underline{1}\) & 4 & 星 & \({ }^{17}\) \\
\hline 4 & \% & 5 & \({ }^{5}\) \\
\hline \(5{ }^{5}\) & -4 & 8 & \({ }_{9}{ }^{5}\) \\
\hline
\end{tabular}
and then \(12,19,25,37,15\) and 9 into C4
Now set up your SYMB view to look like the one right. Make sure only H 3 is checked.

The reason for the last instruction is that only one histogram can be drawn at a time and if more than one data set is checked, only the first one is drawn.

Now use VIEWS Auto Scale to plot the graph. You will hopefully find that it looks like the one on the right. The Auto Scale function is always very effective in the Statistics aplet and is recommended.

If you use the left/right arrows and look at the bottom of the screen you'll see that the frequencies and ranges are listed. I found that I could tidy this graph up a little by going into PLOT SETUP and (on the second page) setting the YTick value to be 5 instead of 1 . I also
 checked the Labels option. The result is shown right.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{HFW宜: - E} \\
\hline \multicolumn{2}{|l|}{WFH: -1 3 , 3\%} \\
\hline \multicolumn{2}{|l|}{HFikis: 3} \\
\hline \multicolumn{2}{|l|}{SELECT STATISTILS PLDT TUPE} \\
\hline CHID P\% & Prine \\
\hline
\end{tabular}

The setting of Statplot controls what type of graph is drawn. There two choices are Hist (short for histogram) or BoxW (Box and Whisker). Pressing the + key while Statplot is highlighted will switch between these two, or you use the CHIS key to pick from the menu
 that pops up.

Unlike histograms, it is possible to have more than one box and whisker graph plotted. This makes comparisons between data sets very easy. If you look for the cursor (circled) in the diagram shown right, you will see that when
 URACD is turned on then information about the graph is given at the bottom of the screen. As usual the up/down arrows change from graph to graph, while the left/right arrows move within the graph.

 URACD and DTFM. They all behave in the normal manner. The DEFW tool can be quite useful by displaying at the bottom of the screen information on which columns make up each graph if you lose track.

Looking again at the screen shot of the first page of PLOT SETUP (near the top of the previous page) you will see that there are three ranges. As with the Parametric and Polar aplets, XRange and YRange control how much of the graph is seen. If your histogram has frequencies of (say) up to 30 then you need to make sure your YRange reaches at least that value or the top of the histogram will be cut off. In the same way, if your data has a minimum value of -5 and a maximum of 35 then your XRange will need to cover at least that range of values. Using VIEWS Auto Scale generally produces very satisfactory results.

The effect of HRange is rather different. It controls what range of data is analyzed in calculating the frequencies, and is normally set automatically to be the maximum and minimum values for the data. For example H 1 (shown right) has an HRange of -2 to 7 . If I go
 into PLOT SETUP and change this to 0 to 7 then the graph loses the left hand column representing the value of -2 .

The advantage of this is that it allows you to eliminate outliers from your graph quite easily. However, eliminating them from your graph does not eliminate them from inclusion in the calculation of the values that appear in the
 ETHIS page. To do that you would need to use DEL in the NUM view to delete the actual data itself.

One final note concerns grouped data. We saw earlier how to deal with data displayed in a frequency table, but did not deal with the case where the data was also grouped into intervals or classes.

For example, suppose we want to analyze the set of grouped data in the table on the right.

The hp 39g+ provides some limited methods to deal with data of this form. Summary statistics can be
\begin{tabular}{|c|c|}
\hline data & freq \\
\hline \(10-19\) & 14 \\
\(20-29\) & 26 \\
\(30-39\) & 37 \\
\(40-49\) & 23 \\
\(50-59\) & 17 \\
\hline
\end{tabular} obtained by entering the mid-points of the intervals as the data values but these will only be approximations, as nature of the data itself does not allow calculation of exact values.

Attempting a normal PLOT will produce a series of isolated columns, each with width one unit. The reason for this is that the calculator is assuming that there are 14 values of exactly 15 (the mid-point) because it doesn't realize
 that the columns extend the width of the interval 10-19.

However this can be fixed by using the setting HWidth.

This variable controls the
 width of the columns, with the initial starting value and end value set by HRng. The PLOT
EDIT (+ PRGE

SETUP views shown above will produce the graph shown below.

\section*{TIPS \& TRICKS - Univariate Data}

\section*{New columns as functions of old}

You have already seen the use of one trick when we created a new column C 1 by storing \(2^{*} \mathrm{C} 1\) into C 2 using the HOME view. This can easily be extended to create new columns as functions of any number of others. For example, a set of data that you suspect is exponential could be 'straightened' by storing LN(column) into a fresh column. Changes of scale and origin can be investigated in this way by storing (say) \(-2 * \mathrm{C} 1+3\) into C 2 . You can even combine columns such as C1 + C2 C3.

If you don't particularly need to see the data as a fresh column, you can use the SYMB view to accomplish the same thing in a simpler way. For example, the SYMB view snapshot on the right would accomplish the same thing as storing \(2^{*} \mathrm{C} 1\) into C 2 . A histogram of H 2 would
 look the same as the one we produced earlier using the HOME view, and the ETHITE command would give exactly the same results. The advantage of this is that it takes much less memory if both columns need not be stored.

\section*{Simulating Dice}

Many of the most common experiments in probability involve the repeated rolling of dice. This can be simulated quite easily in the Statistics aplet using the MATH menu function MAKELIST. (Covered in more detail on page 266)

The syntax is: MAKELIST(expression, variable name, start,end, increment) where expression is the mathematical rule used to generate the numbers.
variable name is the letter (\(\mathrm{X}, \mathrm{Y}\) etc.) that is to be used in the expression (any other letters will be taken as constants). start \(\quad\) is the first value variable name is to take. end \(\quad\) is the upper bound for variable name. and increment is the amount that variable name should be incremented by in each iteration.

For example: MAKELIST (\(\mathrm{X}^{2}, \mathrm{X}, 1,10,2\))
would produce \(\{1,9,25,49,81\}\) as \(X\) went from 1 to 3 to 5 to \(\ldots\)
This lets you use MAKELIST and RANDOM to simulate a normal die.

The expression INT (RANDOM*6+1) will simulate one roll of the die. This means that MAKELIST (INT (RANDOM* \(6+1\)) , \(x, 1,500,1\)) will simulate 500 rolls of a normal die. We therefore need only store the resulting list into a Statistics aplet column to analyze and graph it. This is shown in the series of screen shots to the right.

To simulate the adding of two six sided dice, use the similar expression MAKELIST (INT (RANDOM*6+1) +INT (RANDOM*6+1) , \(\mathrm{x}, 1,500,1\))

\section*{Simulating Random Variables}

It is occasionally handy to be able to simulate a set of observations on random variables of various sorts. This can also be done using the MATH menu function MAKELIST. (See previous page for syntax. Covered in more detail on page 266)

Example 1: Simulate 100 observations on a U[0,1] r.v. to be stored in C2.
In the HOME view type: MAKELIST(RANDOM, \(x, 1,100,1)\) PC2
Note: 1. The symbol is one of the screen keys in the HOME view, appearing as \(\mathrm{ETO}^{\mathrm{T}}\) and read as 'store'.
2. The \(X\) is only a dummy variable here to count off the values.

Example 2: Simulate 50 observations on a discrete uniform r.v. \(\mathrm{U}[3,7]\)
In HOME type: MAKELIST (INT(5*RANDOM+3) , x, 1, 50, 1) \(\boldsymbol{P}\) C2

Example 3: Simulate 50 obs. on a Binomial r.v. with \(n=20\) and \(p=0.75\).
In HOME type:
MAKELIST (\(\Sigma(\mathrm{I}=1,20\), RANDOM \(<0 \cdot 75), \mathrm{x}, 1,50,1)\) C2
Note: The \(\Sigma\) and the = are both on the keyboard. This will be a relatively slow calculation because it involves evaluating 1000 random numbers.

Example 4: Simulate 100 obs. on a normal \(\mathrm{N}\left(\mu=80, \sigma^{2}=50\right)\).
Ensure that MODES is set to radian measure and type:

Example 5: Simulate 50 obs. on an exponential distribution (mean \(=2\)).
In the HOME view type: MAKELIST(-2*LN(1-RANDOM) , 1, 50, 1) \&C2

As an illustration, the result of this particular simulation is shown graphically on the right. Its mean turned out to be 2.067 (3 decimal places.). Yours will be different of course after all, that's the point of using random numbers!

Calculator Tip
The RANDOM function is not truly 'random' any more than it is on any computer. You can, however, make it as random as possible by using the RANDSEED command. For information on this see page 281.

\section*{The Stats Aplet - Bivariate Data}

As mentioned in the Univariate section, one of the major strengths of the hp \(39 \mathrm{~g}+\) is the tools it provides for dealing with statistical data. Unlike the others, the Statistics aplet begins in the NUM view which offers easy input and editing of values, while the SYMB view is reserved for specifying which columns contain data and which ones frequencies, as well as for indicating pairing of columns for bivariate data.

The hp 39g treats univariate and bivariate data quite differently and those differences are reflected in the SYMB and PLOT views. Because of this the Statistics chapter has been split into two.

The previous section dealt with univariate data and we are now going to look at bivariate (paired) data. On the screen in the NUM view of the Statistics aplet you will see a key labeled as either ETilia or IWifa. Pressing the key under this label changes from univariate (ITIIFI) to bivariate (ENIIG) and back. Make
 sure the key is showing ETilil before proceeding.

If your NUM view already has some data in it, press CLEAR (above DEL) and choose All columns. The DEL key is used to delete individual pieces of data, rather than whole

columns. One must be careful when doing this for bivariate data. If your data pairs were in column 1 (C1) and column 2 (C2) then deleting a single piece of data from C1 without deleting its paired element in C2 would destroy the relationship between the two columns.

In this chapter we will use the set of data right to show the use of the bivariate features of Statistics. We will obtain all the usual statistics on it, and draw a scattergram.
\begin{tabular}{|c|r|}
\hline \(\mathrm{x}_{\mathrm{i}}\) & \(\mathrm{y}_{\mathrm{i}}\) \\
\hline 1 & 5 \\
3 & 10 \\
8 & 18 \\
5 & 13 \\
7 & 16 \\
3 & 8 \\
6 & 15 \\
2 & 8 \\
7 & 18 \\
9 & 22 \\
8 & 17 \\
5 & 15 \\
7 & 14 \\
6 & 18 \\
8 & 20 \\
5 & 12 \\
2 & 8 \\
0 & 4 \\
7 & 17 \\
8 & 19 \\
\hline
\end{tabular}

Move the highlight into column C1 and enter the \(x_{i}\) values，pressing the ENTER key after each one．Now do the same for the \(y_{i}\) values in C2．
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) & 0.1 & E－2 & ［3］ & ［－4 \\
\hline & & \[
\begin{aligned}
& 5 \\
& 10 \\
& 10 \\
& 19 \\
& 19 \\
& 16 \\
& \hline 6
\end{aligned}
\] & ＊ & \％ \\
\hline \multicolumn{5}{|l|}{1} \\
\hline E［0］ & In． & S言T & E运 \({ }^{\text {a }}\) & F回Tits \\
\hline
\end{tabular}

Looking at the bottom of the screen you will see a series of tools provided for you．As before，EDIT is not worth bothering with．

\section*{Calculator Tip}

You can enter the \(x_{i}\) and \(y_{i}\) data into both columns simultaneously if you enter it as ordered pairs in brackets． i．e．as \((1,5)\) ENTER（ 3,10 ）ENTER etc． In fact，you can even leave off the closing bracket！The calculator will complete it for you．

We could use VIEWS and Auto Scale to produce a plot（this generally produces very satisfactory results），but let＇s have a look at the PLOT SETUP screen instead．

As you can see，it is very similar to the other PLOT SETUP screens that we have encountered with the main difference consisting of the list of settings for S1MARK，S2MARK etc．These are the markings that are to be used in plotting the points，allowing you to choose different markings for different data sets if you are graphing multiple data sets．

Set your PLOT SETUP screen so that it looks like the one shown above right，also switching to the second page and ensuring that it is checked as shown right and setting YTick to 5.

If you now press PLOT you will see the result shown right．If you look at the screen you will see a small cross and，at the bottom of the screen，a listing of \(\mathrm{S} 1[1]\) ： 1,5 ．This is telling you that the cross is currently on the first

 point in data set S1 whose value is \((1,5)\) ．Using the left／right arrow keys you can move this cross through the data set with the values being reported at the bottom of the screen．

If you have more than one data set displayed on the screen then the up/down arrows move from one set to the other, unless the fit line is also showing in which case the behavior is slightly different. Information is given later on how to display the fit curve and to choose the type of curve.

As usual, the men key produces a list of further options. The key labeled IWE inserts space for a new number by shifting all the numbers down one space. If working with bivariate data you will need to also insert into the paired column.

The SIFT option is capable of dealing with bivariate data if you are careful to enter the column number of the dependent column into the appropriate space. The up a list of columns from which to choose, or you can use the ALPHA key.

Although we bypassed it in the previous example, part of the procedure in dealing with bivariate data is to specify the relationships between columns before plotting. This is done

 S1: C1 C2
\(F\) Fit i: m* 52:
Fit. 2 : \(\mathrm{m} \boldsymbol{x} \mathrm{x}+\mathrm{b}\)
ENTEF IHDEPEMDENT
EODIT FICHE [via the SYMB view as it is for univariate data.

The S1:, S2: ... refer to data sets \(1,2 \ldots\) This allows you to display more than one set of bivariate data by specifying the columns for each set. Columns can be used in more than one set. Note that a 'C' screen key is provided for your convenience.

The screen above shows the default setup when you 8 国國 the aplet in the APLET view. It specifies that columns C1 and C2 are paired and that a linear fit \(\left(m^{*} X+b\right)\) is to be used when calculating a line of best fit. This was all that was required for our previous example and so I bypassed that step for simplicity.

If you intend to use other columns then you must register them in the SYMB view. For example, to use data entered into C3 and C4 you must register them as shown.

\section*{Choosing from available fit models}

On the hp \(39 \mathrm{~g}+\) the Statistics aplet is the only
\begin{tabular}{|c|c|}
\hline 四乡Sthtistics sime & EDLIC SETUP： \\
\hline hingle PMEnSURE： & \\
\hline S1FIT：Linierer & spalt：Line．ar \\
\hline saft：Liగ＠ヨコr & s4FIT：Li i ¢¢．ヨr \\
\hline 35FIT：Li i ¢－ar & \\
\hline CHODSE Statistics & HMOEL TYPE \\
\hline & \\
\hline
\end{tabular} one which has a SYMB SETUP view，and even then only in EDifil mode．This view is supplied to allow you to specify what type of fit equation is to be used． The choices are：

Linear
Logarithmic
Exponential
Power
Quadratic
Cubic
Logistic
and

－ \(\mathrm{m}^{*} \mathrm{LN}(\mathrm{X})+\mathrm{b}(Y=m \ln (X)+b)\)
－ \(\mathrm{b}^{*} \operatorname{EXP}\left(\mathrm{~m}^{*} \mathrm{X}\right)\left(Y=b e^{m X}\right)\)
－ \(\mathrm{b}^{*} \mathrm{X}^{\wedge} \mathrm{m} \quad\left(Y=b X^{m}\right)\)
－ \(\mathrm{a}^{*} \mathrm{X}^{\wedge} 2+\mathrm{b}^{*} \mathrm{X}+\mathrm{c} \quad\left(Y=a X^{2}+b X+c\right)\)
－ \(\mathrm{a}^{*} \mathrm{X}^{\wedge} 3+\mathrm{b}^{*} \mathrm{X}^{\wedge} 2+\mathrm{c} \mathrm{X}+\mathrm{d} \quad\left(Y=a X^{3}+b X^{2}+c X+d\right)\)
－\(L /\left(1+a^{*} \exp \left(-b^{*} X\right)\right)\) this fits the data to a logistic curve \(\left(Y=\frac{L}{1+a e^{-b X}}\right)\) where L is the saturation value． （see tip below）
－User Defined－discussed below．

\section*{Calculator Tip}

1．If you want \(L\) calculated automatically，pre－store a value of zero into it．If the value is known，you can store a positive real value into memory \(L\) prior to the curve fit．
2．If you calculate a line of best fit and want to remove the resulting equation from the SYMB display and return to the＇\(m\)＊ \(\mathrm{X}+\mathrm{b}\)＇display then just position the highlight on the relevant＇Fit：＇line and press the DEL key．When you do this，the FCHE will be removed and will have to be reset．

\section*{The User Defined model}

When you set the model to user defined it means that you are expected to supply the complete equation，including the values of any
 coefficients．The calculator will not calculate the values of any variables you include．For example，if you were to supply an equation of \(A /(X-B)\) as your model then the calculator would use the values of \(A\) and \(B\) currently in memory．

This may seem to be a useless model but it can be quite useful. For example, suppose you had collected a set of data using a data logger and a motion detector which you suspected might represent simple harmonic motion.

There is no trig model supplied in the list of models built-in but some work and experimentation may allow us to find a valid model and test its fit.

If we change into SYMB SETUP view and select User Defined and then change back to SYMB view then we can insert our model as the fit curve. How to deduce the parameters in this model I leave to you!

As you can see in the new PLOT view, the curve we have deduced fits the data quite well. How well is a matter for your judgment, aided by the Re1Err variable (see page 141).

\section*{Connected data}

One of the settings on the second page of the PLOT SETUP screen can be useful for some types of data. For example, one of the common tasks in many mathematical courses is the analysis of time series data. Unlike most bivariate data, time series values are usually plotted as a line graph - i.e. as connected points. This facilitated by Connect.

For example:
The sales of an ice-cream shop are shown as quarterly sales figures for the years 1992 to 1993. Display this data on a graph.
\begin{tabular}{c|cccccccc}
Yr & 1992 & \multicolumn{7}{c}{1993} \\
Qtr & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline Sales & 12 & 18 & 20 & 15 & 13 & 20 & 23 & 16 \\
\((\$ 1000)\) & & & & & & & &
\end{tabular}

The result (with Connect checked) is shown right. The \(X\) values were entered as \(1,2,3,4\), \(5,6,7,8\) rather than \(1,2,3,4,1,2,3,4\).
\begin{tabular}{|c|c|}
\hline & INDEP \\
\hline 33[1]:1472. 12 & [1]N0 \\
\hline
\end{tabular}

\section*{Calculator Tip}

If you have trouble seeing the small dots that the hp 39g+ uses in its scatter-graphs by default then you will be interested in the settings circled on the right. If you move the highlight onto the mark for the data set you are using and press [HID then you will see the menu shown right from which you can choose a different mark. The contrast is illustrated below.

\section*{Two Variable Statistics}

As with univariate statistics, summary statistics are available through the ETiTE key in the NUM view (see right).

Pressing this key changes to a screen which lists the following: MEANX, \(\Sigma X, \Sigma X^{2}\), MEANY, \(\Sigma Y\), \(\Sigma \mathrm{Y}^{2}, \Sigma \mathrm{XY}, \mathrm{SCOV}, \mathrm{PCOV}, \mathrm{CORR}\) and RELERR. See page 141 for information on RelErr.

Let's use the set of data shown in the table on the right to go through the analysis process a second time and this time examine the line of best fit. The data is also listed in the box below.
\begin{tabular}{|l|l|}
\hline \(\mathrm{x}_{\mathrm{i}}\) & \(\mathrm{y}_{\mathrm{i}}\) \\
\hline 1 & 2 \\
1 & 3 \\
2 & 2 \\
5 & 7 \\
6 & 6 \\
5 & 7 \\
4 & 3 \\
5 & 6 \\
6 & 4 \\
2 & 2 \\
\hline
\end{tabular}

Enter the data into the NUM view and then switch to the SYMB view. Make sure that S1 (data set 1) is set to C1 and C2, FCHEed, and that the fit is linear. If not, the fit can be changed in the SYMB SETUP view.

Now change to PLOT SETUP view and set the axes to be as shown right.

From the NUM view, press the STiTS key and you will obtain the results listed in the two screens shown below.

\section*{Calculator Tip}

Make sure that your data set is defined and प्THEled in the SYMB SETUP view before you try to obtain these results.
Results are only given for data sets that are defined and FCHEed.

If you now press the PLOT key you will see the graph shown right. If there is no line of best fit on yours, press the FETU key to get the list of programmable functions along the bottom of
 the screen and then press the FIT key.

As soon as the line of best fit has been obtained, you can switch back to the SYMB view to get its equation. This equation is only calculated when called for by pressing the FIT key.

In the SYMB view (see right) the equation is given to so many decimal places that it doesn't fit onto the screen. The simplest way to see the entire equation is to position the highlight on the equation and press the 태이 key.

When you do you will obtain the view seen right which gives the equation of the line of best fit as \(\hat{y}=0.8199 x+1.1662\). With a correlation coefficient of 0.7829 (from the summary stats seen previously) this would probably not be regarded as reliable.

On the screen above the equation is given to 4 decimal place accuracy. This is accomplished by changing to the MODES screen (above the HOME key) and specifying 'Fixed 4' as the Number Format. If you don't do this then you can use the arrow keys to scroll the equation
 left or right if it extends off the screen.

It is very important that you display the equation in the SYMB view by pressing 티T instead of 태NN. Although pressing EDIT displays the equation in a form which can be scrolled through problem with this method is that the calculator thinks that you are choosing to over-ride its choice of equation with your own by editing it. As long as you press Thill there is no problem but if you press ENTER it changes the FitType from whatever you chose to 'User Defined'.

If you are not aware that this has happened then it can have very serious consequences. For example, if you were now to change the data and then re-plot, the fit equation will not be re-calculated and will become inaccurate.

We can make predictions from our line of best fit in two places - the HOME view and the PLOT view. The hp 38 g was able to do this only from the HOME view.

In the HOME view we use the functions PREDY and PREDX from the Stat-Two section of the MATH menu. The functions PREDX and PREDY use whatever was the last line of best fit calculated. It is up to you to ensure that the one you want used was the one last graphed.
 If I want to predict a \(y\) value for \(x=3\), then I simply type PREDY (3) into the HOME view as shown right.

Many people choose to simply type 'PREDY' using the ALPHA button instead of going through the MATH menu.

Using the PLOT view is the probably the more visually appealing method of obtaining predicted values. When you have plotted a set of data and its fit curve then pressing up arrow
 will change the focus of the values at the bottom of the screen from the data points to the PREDY values. In the screen snapshots shown right the focus changes from data point 3 (2,2), to the PREDY value for \(\mathrm{x}=2\) of 2.806 .

If there is more than one data set (and fit lines) graphed then the up arrow will move progressively from one to another and finally back to the first.

Pressing left and right arrows will move along the fit line but only on pixel positions, which may not be suitable if the scale is not chosen carefully. A better way is to use the 6 value of \(x\), including values which would normally be off-screen.

Another aspect of bivariate stats needs to be remembered when the fit chosen is not linear. Mathematically, the correlation coefficient is a strictly linear measure of the goodness of fit and this means that the correlation coefficient quoted in the ETiTS view is always for the linear model even when the model chosen is not linear.

There are two methods of dealing with this. The first is to use another measure of goodness of fit. The second is to 'linearize' the data (discussed below). The hp 39g+ provides an alternative measure of goodness of fit via the Re1Err value in the ETHIS view.

Re1Err is defined as the measure of the relative error
in predicted values when compared to data values,
and has the formula shown right. The \(\hat{y}\) values are and has the formula shown right. The \(\hat{y}\) values are obtained using the PREDY function internally. The only drawback to Re1Err is that there is no upper limit its value of as there is for the correlation coefficient. The interpretation placed on it is that the closer it is to zero the better the model fits the data. This value is available for any of the data models, including the user defined model.

Alternatively, when data is non-linear in nature you can transform the data mathematically so that it is linear. Let's illustrate this briefly with exponential data.
\begin{tabular}{|r|l|}
\hline\(x_{i}\) & \(y_{i}\) \\
\hline 1 & 2 \\
2 & 4 \\
3 & 8 \\
4 & 16 \\
5 & 32 \\
6 & 64 \\
\hline
\end{tabular}

As you can see, I chose a very simple rule for the data: \(y=2^{x}\)

If you set up a linear fit for the data in S 1 , and then view the bivariate stats, you will find that the correlation for a linear fit is 0.9058

As you can easily see from the graph left, a linear fit is not a very good choice.

If we change now to the SYMB SETUP view and choose an Exponential fit rather than a linear fit then the results are far better.

The curve which results in the PLOT view is exactly what is required and the equation comes out as \(Y=1 \cdot E X P(0.693147 X)\)

This "EXP(" is the calculator's notation for \(Y=1 \cdot e^{0.693147 X}\) which then changes to \(Y=2^{X}\).

ज1:C1 S2:
Fit. 2 : m*
ENTEF USEF DEFIHED FIT

Checking the ETiTS key shows that the correlation is unchanged at 0.9058 even when the new equation clearly fits the data perfectly.

The value of Re1Err on the other hand has changed from 0.09256 for the linear fit, to a value of zero for the exponential model.

The alternative to using Re1Err is to graph column C1 against 1n(C2) which also straightens the data.

'Linearizing' will cause problems if some of the data points are outside the domain of the function you use, such as negative values in a log function. On the other hand, you have far more control if you are able to choose the exact function. For example, if you had a set of data which was derived from cooling temperatures then you would probably find that it was asymptotic to room temperature rather than the x-axis. The built-in equation assumes that the data is asymptotic to the \(x\) axis and would not give a good fit. You could get better results by subtracting a constant from the whole column first.

\section*{Tips \& Tricks - Bivariate Data}

\section*{New columns as functions of old}

As with univariate statistics, you can use functions of old columns as new sets of data. See the Univariate version of this section for two different ways of doing this.

For example, a set of data (C1, C2) that you suspect is exponential could be straightened by setting up S2: as (C1, LN (C2)).

The effects of changes of scale and origin on data and summary statistics can be investigated in this way by storing (say) \(-2 * C 2+3\) into \(C 2\). You can even combine columns in this way, such as storing \(C 1+C 2\) into \(C 3\).

\section*{Using values from TITIS in calculations}

It is often useful to be able to retrieve values such as the mean and standard deviation for use in further calculations. With most simpler calculators these values are found by pressing keys rather than reading from a STiTS screen, so doing a calculation like 'multiply the mean by 3.5 ' is not hard. The values shown on the ETHITS screen can also be retrieved for use on the hp \(39 \mathrm{~g}+\) relatively easily.

For example, the set of data below contains a suspected outlier (erroneous value). In this case one might suspect a missing comma.
\[
\{2,3,5,2,1,5,3,6,7,-2,3,5,5,55\}
\]

A common test for outliers is to calculate the mean and standard deviation without the presence of the suspected outlier, and then to check whether the suspect piece of data is within three standard deviations of the mean. If not, then it is discarded.

Enter the data without the suspected outlier into column C1 with the calculator in TWIF mode. Ensure that the SYMB view is set up correctly and then press the ETHTS key.

As you can see on the right, the values of the mean and standard deviation are given in the STHTE screen to 12 significant digits.

If we now switch to the HOME view, we can recall these values and use them in a calculation to find the upper and lower cut off points for acceptance of data.

As you can see on the left, the range for acceptance is -3.46 to 10.38 , which makes the value of 55 almost certainly an error.

There are two ways to obtain these values. You can type them into the HOME view using the ALPHA key, or you can use the VARS key instead. If you press VARS and then the screen key labeled HFLET then, assuming the Statistics aplet is active, you will see the view above right. Scroll down to the Stat-One variables and then press the right arrow. This puts you in the list (see right) of univariate summary statistics. If you highlight one and press ENTER then the variable name will be
 pasted into the HOME view for use. People often find it easier to simply type them.

\section*{Calculator Tip}

The values of the mean and standard deviation retrieved are those of the last set calculated. If you have more than one set of data in the NUM view then firstly un TH H all except the one you want, and secondly press the ETiTE key in order to force a calculation of the values you want. This ensures that the ones you retrieve in the HOME view are the ones you want.

This technique can also be used for bivariate data in exactly the same manner. You should ensure, as per the note above, that only the set of data you want to use is FCHEled and that STHiS have been displayed for it.

All the usual values are retrievable, with the exception that there is no way to provided to retrieve the coefficients of the line of best fit, since they appear in the SYMB screen rather than the STiTS screen.

Coefficients can be obtained from the chosen fit model algebraically. The function PREDY from MATH gives a predicted y value using the last line of best fit that was calculated. This means that you must use the SYMB view to ensure that your set of data is the only one FCHE SETUP is set to the correct fit model, and also use the PLOT screen and the FIT key to ensure that your set of data was the last one graphed and that it has had its curve of best fit displayed. Until the curve has been displayed, the coefficients are not available or, worse, might belong to another data set.

If the line of best fit is \(y=m^{*} X+b\) (see the SYMB screen) then the calculations shown below and right will give the slope and \(y\)-intercept.
\[
\begin{aligned}
\operatorname{PREDY}(0) & =m^{*} 0+b \\
& =b \\
\text { and } \operatorname{PREDY}(1)-\operatorname{PREDY}(0) & =\left(m^{*} 1+b\right)-\left(m^{*} 0+b\right) \\
& =m+b-b \\
& =m
\end{aligned}
\]

\section*{Finding Fit Coefficients}

\begin{tabular}{|c|c|}
\hline Linear & \[
\begin{aligned}
& -\mathrm{m}^{*} \mathrm{X}+\mathrm{b} \\
& \quad b=\operatorname{PREDY}(0) \\
& \quad m=\operatorname{PREDY}(1)-\operatorname{PREDY}(0)
\end{aligned}
\] \\
\hline Logarithmic & \[
\begin{aligned}
&-\mathrm{m} * \mathrm{LN}(\mathrm{X})+\mathrm{b} \\
& b=\operatorname{PREDY}(1) \\
& m=\operatorname{PREDY}(\mathrm{e})-\operatorname{PREDY}(1)
\end{aligned}
\] \\
\hline Exponential & \[
\begin{aligned}
& -\mathrm{b}^{*} \operatorname{EXP}\left(\mathrm{~m}^{*} \mathrm{X}\right) \\
& \quad b=\operatorname{PREDY}(0) \\
& \quad m=\operatorname{LN}(\operatorname{PREDY}(1) / \operatorname{PREDY}(0))
\end{aligned}
\] \\
\hline Power & ```
\[
-\mathrm{b}^{*} \mathrm{X}^{\wedge} \mathrm{m}
\]
\[
b=\operatorname{PREDY}(1)
\]
\[
m=\operatorname{LN}(\operatorname{PREDY}(\mathrm{e}) / \operatorname{PREDY}(1))
\]
``` \\
\hline Quadratic & \[
\begin{aligned}
& -\mathrm{a}^{*} \mathrm{X}^{\wedge} 2+\mathrm{b}^{*} \mathrm{X}+\mathrm{c} \\
& a=(\operatorname{PREDY}(2)-2 * \operatorname{PREDY}(1)+\operatorname{PREI} \\
& b=(\operatorname{PREDY}(2)+4 * \operatorname{PREDY}(1)-3 * P \\
& c=\operatorname{PREDY}(0)
\end{aligned}
\] \\
\hline & or, \(\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1\end{array}\right]^{-1} \times\left[\begin{array}{c}\operatorname{PREDY}(0) \\ \operatorname{PREDY}(1) \\ \operatorname{PREDY}(2)\end{array}\right]\) \\
\hline Cubic & - \(a^{*} X^{\wedge} 3+b^{*} X^{\wedge} 2+c X+d\) \\
\hline & \[
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
8 & 4 & 2 & 1 \\
27 & 9 & 3 & 1
\end{array}\right]^{-1} \times\left[\begin{array}{l}
\operatorname{PREDY}(0) \\
\operatorname{PREDY}(1) \\
\operatorname{PREDY}(2) \\
\operatorname{PREDY}(3)
\end{array}\right]
\] \\
\hline
\end{tabular}

\section*{Correct interpretation of the PREDX function}

The PREDX function in the MATH menu simply reverses the line of best fit. For example, the equation \(\hat{Y}=0 \cdot 8199 X+1 \cdot 1662\) earlier would use \(\hat{X}=\frac{(Y-1.1662)}{0.8199}\) to predict the \(X\) values.

Whether this is mathematically correct depends on how you interpret the PREDX function. If, as HP intended, you interpret it to mean "give me an \(x\) value which, if used in the PREDY function, would give me this \(y\) value", then it is correct. However, it should not be interpreted to mean "predict an \(x\) value based on this \(y\) value".

It should not be felt that the hp 39g+ is unusual in this interpretation. Most calculators' equivalent of the PREDX function behave in the same manner.

The reason for not using the second interpretation is that the results it gives would then be incorrect. The line of best fit (unlike the correlation) changes as the independent and dependent variables swap roles and can't be simply reversed in this way.

The formula for the slope \(b\) in the line of best fit \(\hat{y}=a+b x\) is given by the formula: \(b=\frac{S_{x y}}{\left(S_{x}\right)^{2}}\). While the value of \(S_{x y}\) will not change if the
 roles of independent and dependent columns are reversed, the value of \(\left(S_{x}\right)^{2}\) on the bottom means that this formula will give a different value if you change which column is regarded as \(x\) (indep.) and which as \(y\) (dependent). This different value for \(b\) will also mean a different value for \(a\) and these will not be the values which would result from the simple inverse function.

If you truly wish to predict \(X\) values in the sense of the second interpretation, then you should change to the SYMB view and enter a new data set S2 which uses C2 and C1 in reversed order, avoiding the need to re-enter the data.

Now use PREDY rather than PREDX. As you can see in the screen below, the result of PREDX (5) with C1 vs. C2 is not the same as PREDY(5) using C2 vs. C1.
\begin{tabular}{|c|c|}
\hline  &  \\
\hline & 4.67567567567 \\
\hline PREDY(5) & 4.29797979799 \\
\hline ETill & \\
\hline
\end{tabular}

\section*{Assigning rank orders to sets of data}

It is occasionally handy to be able to assign rank orders to a set of data. You might be running a Quiz Competition Night, or recording times for the 100 meter sprint, but in either case it is handy to be able to sort the data into descending order and assign rankings. This is easy for small sets of data, but becomes difficult for larger sets.

Let us assume a set of 20 competitors in the 100 meter sprint, with times recorded to two decimal places, and competitors numbered 1 to 20 . Suppose that the results were as shown right...

Enter the competitor numbers as column C1 and the times in column C2. I'm going to assume here that the competitor numbers also run from 1 to 20 but this may not be the case. In addition to this, put the numbers 1 to 20 into column C3 also. The can be a bit tedious to type in for lists longer than 20 , so you could use the expressions MAKELIST ( \(\mathrm{X}, \mathrm{x}, 1,20,1\) ) \(\mathrm{P}^{\mathrm{C}} \mathrm{C}\) and C1FC3 to shortcut the process, replacing 20 with whatever is needed. Make sure that the EDilit option is selected.

The result should look like this...
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) & E1 & C-2 & [3 & [4 \\
\hline 1
1
3
4
5
5 & & \[
\begin{aligned}
& 12.97 \\
& 11.4 \\
& 11.94 \\
& 11.9 .9 \\
& 11.9 .9 \\
& 12.9
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 2 \\
& \hline 1 \\
& 4 \\
& 5 \\
& 5 \\
& \hline
\end{aligned}
\] & \\
\hline \multicolumn{5}{|l|}{1} \\
\hline \multicolumn{5}{|l|}{EDIT} \\
\hline
\end{tabular}

Now position the highlight on column C2 and press the EDGT1 key. In the SORT SETUP screen (shown below right) enter C1 as the Dependent column. This will have the effect of pairing columns C 1 and C 2 and then
\begin{tabular}{|c|l|}
\hline Competitor & Time \\
\hline 1 & 12.23 \\
2 & 11.47 \\
3 & 11.34 \\
4 & 12.87 \\
5 & 12.23 \\
6 & 11.30 \\
7 & 10.51 \\
8 & 11.34 \\
9 & 11.46 \\
10 & 12.34 \\
11 & 12.23 \\
12 & 11.50 \\
13 & 12.01 \\
14 & 11.97 \\
15 & 12.05 \\
16 & 12.87 \\
17 & 12.02 \\
18 & 12.52 \\
19 & 11.37 \\
20 & 10.75 \\
& \\
\hline
\end{tabular} sorting column C 2 into ascending order, rearranging column C 1 to reflect the changes. When ready, press [KK. The results of this sort are shown right.

The final column C3 has not been re-arranged. With a few alterations, it contains the rankings. Looking down the column it can be seen that there are two values of 11.34 (the \(4^{\text {th }}\) and \(5^{\text {th }}\) ). Their ranking should therefore both be changed to 4 . Continuing this process down the length of column 3 will produce the
 rankings for the whole 20 competitors.

\section*{Using Stats to find equations from point data}
eg. 1 Find the equation of the quadratic which passes through the points \((1,5),(3,15)\) and \((-5,71)\).

Change to the PLOT view using the VIEWS Auto Scale option and press the FIT key. Don't worry that the scale is not good because we don't care about the graph. It only needs to be drawn in order to calculate the fit equation.

Finally, change back to the SYMB view and see the equation, pressing

eg. 2 A population of bacteria is known to follow a growth pattern governed by the equation \(N=N_{0} e^{k t} ; t \geq 0\). It is observed that at \(\mathrm{t}=3\) hours, there are 100 colonies of bacteria and also that at \(t=10\) hours there are 10000 colonies.
(i) Find the values of \(N_{0}\) and of \(k\).
(ii) Predict the number of bacteria colonies after 15 hours.
(iii) How long does it take for the number of colonies to double?
(i) Find \(N_{0}\) and \(k\).


Start up the Statistics aplet, set it to ETiliro and enter the data given. Change to the SYMB SETUP view and specify an Exponential model for the data.

Either use the VIEWS Auto Scale option, or change to the PLOT SETUP view and adjust it so that it will display the data. This is not really needed, since the line of best fit is what we need and it will be calculated even if the data doesn't show.

Now change to the PLOT view and press FIT. Wait while the line draws.



Change to the SYMB view, move the highlight to the equation of the regression line and press EHID. Rounded to 4 dec. places, this gives an equation of \(N=13 \cdot 8950 e^{0.6579 t}\).

(iii) Find \(t\) so that \(N=2 N_{0}\).

The value of \(N_{0}\) is the \(y\) intercept of the line of best fit. These values from the curve of best fit are not directly accessible but can be retrieved using the PREDY function (see page 145). This is shown in the screen shown right. Store the results into memories \(A\) and \(K\). This saves having to re-type them from the EHOD screen.





E3:
E4:
E5:

Now switch to the Solve aplet and enter the equation to be solved. Changing into the NUM view, you should find the values of \(A\) and \(K\) already defined (that was why we stored the curve values into the appropriate memories),



Result: Doubling time is 1.0536 hours.

\section*{The Inference Aplet}

This aplet is a very flexible tool for users investigating inference problems. It provides critical values for hypothesis testing and confidence intervals, and does this not only quickly but in a visually helpful format.

Before we look at the Inference aplet in detail I am going to take a small digression to look at a simple inferential problem which can be solved using only the Statistics and Solve aplets.
"Four coins are tossed 400 times and the number of heads noted for each toss. The results are shown below. Using the Chi \({ }^{2}\) test at a 5\% level of confidence, indicate whether the coins may be biased."
\begin{tabular}{|r|c|c|c|c|c|}
\hline Number of heads & 0 & 1 & 2 & 3 & 4 \\
\hline Frequency & 32 & 112 & 158 & 90 & 8 \\
\hline
\end{tabular}

We would expect that for an un-biased set of coins the distribution would be binomial. Our hypotheses are:
\(H_{0}\) : The number of heads is binomially distributed ( \(n=4 \& p=0.5\) )
\(H_{A}\) : The number of heads is not binomially distributed ( \(n=4 \& p=0.5\) )

Begin by entering the data into the first two columns of the Statistics aplet (right).

We now need to calculate the expected values based on our null hypothesis. We can do this in the HOME view using the calculation shown right (and below), inserting the results into column C3.
\[
400 * \operatorname{COMB}(4, \mathrm{C} 1) * .5 \wedge \mathrm{C} 1 * .5 \wedge(4-\mathrm{C} 1) \cdot \mathrm{C} 3
\]

We can now calculate the \(x^{2}\) value using the calculations shown right, which places the individual values into column C4 for inspection if required.


The values can be seen by changing to the NUM view.

In the MATH menu, Probability section, there is a function called UTPC (Upper-Tailed Probability Chi-squared) which will give the critical \(x^{2}\) probability for a supplied number of degrees of freedom and a value. See page 283. In this case we would like the value for a
 given probability so we will enter the formula into the Solve aplet.

Change to the NUM view, enter the known parameters of \(D=4\) and \(P=0.05\), and SILTE for the critical \(\mathrm{x}^{2}\) value.


Since our value of 16.387 is larger than the critical value of 9.488 we conclude that we must reject the null hypothesis and judge that the observed values do not follow this binomial distribution and hence that the coin is probably biased. This does not say that it is not binomially distributed; just not with those parameters.

As can be seen from this example, the Statistics and Solve aplets can be used for simple problems, particularly in cases where working is required to be shown. For more complex problems the Inference aplet provides more powerful tools.

\section*{Hypothesis test: T-Test \(1-\mu\)}

A company makes boxes of matches which are supposed to contain an average of 50 matches. A student has counted the contents of 20 boxes and found the results below. Using a 5\% confidence level, decide whether the claim is correct.

\(47,50,52,51,53,51,49,49,52,53,54,48,53,55,52,54,54,53,48,48\)
Enter the data into the Statistics aplet then change to the Inference aplet.

Choose the test and the alternate hypothesis in the SYMB view of the Inference aplet.

In this case we are working with a single sample and we do not know the standard deviation of the underlying population, so we will use the Student-t test and the alternate
 hypothesis that the mean of the real underlying population from which the sample was drawn is not equal to that of the proposed underlying population.

Change now to the NUM SETUP view to enter the required values. Rather than entering them by hand, press the Ifilil key. If you have more than one copy of the Statistics aplet (under other names) then you will be
 presented with a list of aplets from which to choose.

Once you have chosen the aplet, you need to nominate the column from which to import the data. The default is column C 1 , which is what we want in this case, but you can press the CHIIE key to select from a list of any other columns which contain data. When you have the correct column, press [0K.

Enter the population mean \(\mu_{0}=50\), and check that the test level is correct at \(0.05(5 \%)\).

If you now change to the NUM view you will see the inferential data in numeric form. The test Student-t value is given as 2.392 and the probability of obtaining such a value as 0.0272 . The critical \(t\) values for this test level of \(5 \%\) are given as \(\pm 2.093\) and the critical boundaries for the sample mean as 48.86 and 51.14.

The same information can be seen in a more visual form if you change to the PLOT view. The upper diagram shows the critical range for the \(t\) values, while the lower horizontal line shows the equivalent critical sample mean range.


The test value for the Student-t and the sample mean are listed in the middle of the screen and the rough position of these values is shown by a vertical line in both the upper and lower diagrams. The regions for rejection of the null hypotheses are shown at the very top of the screen by the ' \(\leftarrow R\) ' and 'R \(\rightarrow\) '.

We assume, by statistical theory, that the distance \((\bar{x}-\mu)\) is normally distributed. If the null hypothesis is true then the mean of this new distribution should be zero. Our result is indicating that our particular value of \((\bar{x}-\mu)\) is of such a size that if the null hypothesis is true then the probability of it appearing by chance is less than \(5 \%\).

In this case, whether you work from the PLOT view or the NUM view, it is clear from the evidence that the null hypothesis should be rejected, with less than a \(5 \%\) chance of this rejection being incorrect. The alternate hypothesis that the mean is not 50 should be accepted. Of course in this case, despite some boxes containing less than 50 matches, the actual mean seems to be above 50 so we can hardly condemn the company for putting more matches in the boxes than they need to!

\section*{Confidence interval: T-Int 1- \(\mu\)}

In the previous example we found that the evidence of our sample indicated that the mean number of matches in the boxes was not 50. Suppose we now want to know, at the \(95 \%\) confidence level, within what range of values the true population mean lies.

Change back to the SYMB view and CHITE the method of Conf Interval. The type of interval is converted to the similar type of T-INT: \(1 \mu\).

In the NUM SETUP view use the import facility as before to import the values from our sample data. The default confidence level is \(99 \%\) so you will need to change that to 0.95 .


Changing to the NUM view gives the minimum and maximum values for the population mean of 50.16 to 52.44 at a \(95 \%\) confidence level.


As before, a more visual display can be seen in the PLOT view.

Thus the sample data indicates in our two
 examples that:
- we can be confident the average number of matches is not 50 with less than a \(5 \%\) chance of being wrong, and
- we can conclude, with a confidence of \(95 \%\), that the true average number of matches is between 50.16 and 52.44 .

\section*{Hypothesis test: T-Test \(\mu_{1}-\mu_{2}\)}

A farmer compared the 15-day mean weight of two sets of chicks, one group receiving feed supplement A and the other supplement C. Twenty two chicks only one day old were assigned randomly to the two groups. To distinguish between the two groups of eleven, which were caged together to minimize other influences, the heads of the chicks were stained red and purple respectively with a harmless vegetable dye. The individual weights were recorded in the table to the right. From the means at the bottom of the table it appears that supplement A produces a higher mean weight. The farmer wishes to know, at the \(1 \%\) test level, whether this is statistically significant.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Weights } \\
\hline Supplement A & Supplement \(C\) \\
\hline 57 & 89 \\
\hline 120 & 30 \\
\hline 101 & 82 \\
\hline 137 & 50 \\
\hline 119 & 39 \\
\hline 117 & 22 \\
\hline 104 & 57 \\
\hline 73 & 32 \\
\hline 53 & 96 \\
\hline 68 & 31 \\
\hline 118 & 88 \\
\hline \(\bar{x}=97\) & \(\bar{x}=56\) \\
\(\sigma_{X}=27.75\) & \(\sigma_{X}=26.54\) \\
\hline
\end{tabular}

Our hypotheses are:
\(H_{0}\) : The effects are the same \(\left(\mu_{1}=\mu_{2}\right)\)
\[
\mathrm{H}_{\mathrm{A}}: \text { Supplement } \mathrm{A} \text { is better }\left(\mu_{1}>\mu_{2}\right)
\]

Enter the data into columns C1 and C2 of the Statistics aplet.


We are dealing with two independent samples in this case and so we need to choose from those tests which involve two samples.

Since we know the standard deviations of only these samples, we must again use a Student-t test. We then change to the NUM SETUP view to import the summary statistics.

Since the two standard deviations for the samples are similar, and the sample sizes are the same, a more accurate estimate of the population standard deviation will be obtained if the data is pooled, so ensure that this option is FICHEed.

The NUM view shows the critical values. We can see that the probability of obtaining a test student-t value of 3.38 is 0.0015 and this is well below the permitted test level of \(1 \%\).

The PLOT view also shows that the vertical line representing the value of \(\bar{x}_{1}-\bar{x}_{2}\) or \(\Delta \bar{x}\) is well into the region of rejection indicated by the \(\mathrm{R} \rightarrow\).




From the evidence we should reject the null hypothesis and accept instead that the average weight of the group receiving supplement \(A\) is significantly higher than those receiving supplement \(C\) with only a \(1 \%\) chance of being incorrect.

\section*{Hypothesis test: Z-Test 1- \(\mu\)}

A teacher has developed a new teaching technique for hearing-impaired students which he believes is producing significantly better results. He wishes to publish a paper on this and needs to check his results statistically.

A standardized test is available for which it is known that the normal performance of hearing-impaired students at the same stage of study has a mean of \(53.6 \%\) and a standard deviation of \(12.2 \%\). When he applies this test to his class of 23 students their scores are shown below. The teacher believes that this data shows that his students are scoring significantly better and wishes to test this at a level of \(5 \%\).

Test results:
\[
\{57,72,42,50,55,58,59,38,45,53,77,57,52,69,50,55,59,68,62,63,53,56\}
\]

Enter the data into column C1 of the Statistics aplet.

Changing to the Inference aplet, we choose a Hypothesis test using Z-test: \(1 \mu\), since we know the population standard deviation.

The hypotheses are:

\(\mathrm{H}_{0}\) : The sample is drawn from a population whose mean is the same as the standardized population \(\left(\mu=\mu_{0}\right)\).
\(H_{A}\) : The sample is drawn from a population whose mean is larger than that of the standardized population \(\left(\mu>\mu_{0}\right)\).

Change to the NUM SETUP view, you can use the import facility to import the summary statistics from the Statistics aplet.


Enter the values for the mean and standard deviation of the standardized test, and the significance level of 0.05 (5\%).

If we now change to the NUM view we can see that the test \(z\) score is less than the required critical \(z^{*}\), and the probability of obtaining a mean of the value found is 0.1080 , which is larger than the required test value of 0.05 .

In the PLOT view, we can see visually that the vertical line representing the sample mean is not within the region of rejection marked by the \(R \rightarrow\).


From the evidence the teacher must reject the alternate hypothesis and conclude that it is not possible to say at the \(5 \%\) level of significance that his class has averaged significantly higher than the standardized population from which the test was drawn. He should re-think his proposed paper or his new teaching method. Alternatively, from the diagram in the PLOT view it seems that his mean is not far from being significant. Perhaps he simply needs to collect more data in the hopes that this may back up his view. The result he has obtained is, after all, only a probability and further investigation may give a different view.

\section*{TIPS \& TRICKS - INFERENCE}

\section*{Importing from a frequency table}

The import ([ITFFI) facility of the Inference aplet has a small weakness in that it can't import from paired columns defining a frequency table.

For example, suppose we use columns C1 and C2 to define a frequency table, ensuring that it is registered in the SYMB view as shown right.

If you now change to the NUM SETUP view of the Inference aplet and try to use the import facility you will find that you can import the mean and standard deviation from either column C1 or C2 but not from both at once.

What's needed, of course, is a way to expand
 the paired frequency table columns into a single column listing all values. The program shown below will do this for you. It is set up to take a frequency table defined in columns C8 and C9 and convert them into a single column stored in column C0. The program uses columns \(8,9 \& 10\) because there is seldom data in them.
 Enter any name you want, such as 'CCreate'. Now type in the code below.


We'll now use this program to expand the frequency table I built earlier. The first thing we need to do is to move columns C1 and C2 to C8 and C9. Rather than re-typing, this can be done in the HOME view as shown.


Now change into the Program Catalogue and \(\mathrm{FH}^{\mathbf{N}}\) the program you created. Assuming that it has no errors you will see a running count as it creates the new column. This is just to give you something to watch while it works.

If you then change to the NUM view you will find that column CO contains the result.


You can now import that column's mean and standard deviation into the Inference aplet. After you have used the column you will probably also want to delete columns C8, C9 and C0 to save space.

Bear in mind that if you use this program to create a column containing hundreds or even thousands of values then the program will take a long time to complete. It might be easier to use the Statistics aplet to calculate the required mean and standard deviation in the normal way and then enter the values into the Inference aplet either by hand or by using the VARS menu.

\section*{The Finance Aplet}

This aplet is designed to allow users to solve time-value-of-money (TVM) and amortization style problems quickly and easily, as well as ordinary compound interest problems.

Compound interest problems involve bank accounts, mortgages and similar situations where "money earns money". TVM problems involve the use of the idea that the value of money changes with time - a dollar today is worth more than the same dollar some years from now. For example, that a dollar invested today can generate more money than the same dollar invested later.

The calculator manual contains a lengthier explanation for those who need it, as does any high school or college textbook.

When you ETHifit the aplet you will see the
 initial view shown right.

Pressing SYMB, NUM or PLOT will make no difference to this aplet as it is quite limited and only has the one view, consisting of two related pages.

\section*{Parameters}

There are a number of parameters or variables which must be either supplied or solved for. These are:

N - The total number of compounding payments or payments.

Mode - This has the value of Beg(inning) or End depending on when payments occur relative to the compounding periods - at the beginning or the end.

P/YR - The number of payments per year.
I\%YR - The nominal interest rate or investment rate per year. This is then divided by \(P / Y R\) to find the nominal interest per compounding period. This is the rate actually used in the internal calculations.

PV \(\quad-\quad\) This is the present value of the initial flow of cash．In a loan，this is the amount of the loan．In an investment， the amount invested．PV is always the amount at the start of the first period，however long that may be．

PMT－This is the size of the periodic payment．The assumptions made are that all payments are the same size and that no payments will be skipped．Payments can occur at the beginning or the end of a compounding period，depending on the setting of Mode．

FV－The future value of the investment or loan．This could be the amount in a bank account after a period of years， the residual on a lease，the amount still owing on a loan after N repayments，or the remaining value of an investment which has been paying income as an annuity．

When using the aplet is it important to visualize the cash flow in terms of positive cash（inwards）or negative cash（outwards）．This can be illustrated simply via the following example．Always bear this principle in mind when deciding how to plan your setup of the aplet．

\section*{Straightforward compound interest}

Invest \(\$ 1000\) into a bank account paying \(6.5 \%\) per annum for 5 years．Interest is calculated monthly and credited to the account at the end of each month．What is the investment worth at the end of the period？

Looked at from the point of view of the person investing the money，the cash flow is initially outwards（negative）by \(\$ 1000\) ．The final payment is inwards（positive）and no payments （withdrawals）are made during the period of
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline & GE EMF： 12 & \\
\hline PY： & 1，606， 6 d & \\
\hline PHT： & ． 6.1 & Prim： 12 \\
\hline & B16．76 & End \\
\hline ENTEF & futufe yblue af & SOLPE \\
\hline EEIT & Hiklit & 國吅泪 \\
\hline
\end{tabular} the investment．Five years of monthly payments means that N is 60 ．The view on the right shows the problem on the calculator．The 且以䀦 button has been pressed to give a future value FV of \(\$ 1816.70\) ．

Calculator Tip
As can be seen above，the designers of this aplet chose to display money to 2 decimal places and using comma separators．This choice is independent of the settings in the MODES view．When entering values do not use commas as they will simply result in a syntax error．

\section*{Annuity}

An engineer retires with \(\$ 650,000\) available for investment. She invests the money in a portfolio which is expected to have an average return of \(5 \%\) per annum. She wants to have the account pay a monthly income to her and asks the accountant to assume that the income must last for 20 years. What income can be withdrawn?

The PV for this problem is negative because, from the point of view of the engineer, the money flow is outward from her to the investment portfolio. The value of the regular payment, which has been solved for on the right, is positive as it is being paid from the
 portfolio to her. We also assume that the future value FV is to be zero since the income is only to last for 20 years. On this basis the monthly annuity can be \(\$ 4289.71\)

\section*{Loan calculations}

You wish to purchase a car by taking out a loan. The current interest rate is \(6.5 \%\) and you can afford to make monthly payments of \(\$ 300\). You want to take out the loan over a period of 6 years and to still owe \(\$ 10,000\) at the end of that period (you expect an investment to mature at that time to pay the final amount). How much can you borrow?

In this case, from your point of view, the payments and the FV final residual are outgoing (negative) since they are made to the bank. We have pressed SILTE to find the PV and this is the amount that can be borrowed. It will be positive since it is paid to you. In this
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline *: & 2 & [2YF: 6. & & & & \\
\hline \multicolumn{6}{|l|}{PY: E4, 6E4, 29} & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{EkTE} & PFES & ENT Yilue df & 1F & s & & \\
\hline & &  & & & & \\
\hline
\end{tabular} case it is clear that you can afford to borrow \(\$ 24,624.29\).

\section*{Amortization}

The second page of this aplet allows amortization calculations in order to determine the amounts applied towards the principal and interest in a payment or series of payments.

Suppose we borrow \$20,000 at an interest rate of \(6.5 \%\) and make monthly payments of \(\$ 300\). The initial situation is as shown in the screen on the right.

Press the MPITRT 7 button to change to the amortization screen. The initial appearance is as shown. As can be seen, the default number of payments to amortize over is 12.

Pressing the MMDK button will amortized the loan over the first year. As can be seen right, \(\$ 2,369.77\) has been paid off the principal, leaving a balance of \(\$ 17,630.23\). Of the payments made, \(\$ 1,230.23\) went towards the payment of interest.

Pressing the [E\&FI button will transfer the balance back to the previous page as the new value of the PV.

At this stage you can amortize again for another 12 months as shown right. This can be continued indefinitely.




\section*{The Quad Explorer Teaching Aplet}

Rather than being a multi-purpose aplet, this is a teaching aplet specialized to the single use of exploring graphs of quadratics.

\section*{Objectives}

Using the Quadratic Explorer aplet, the student will investigate the behavior of the graph of \(y=a(x+h)^{2}+v\) as the values of \(a, h\) and \(v\) change. This can be done both by manipulating the equation and seeing the change in the graph, and by manipulating the graph and seeing the change in the equation.

Press ETilfi to see the main screen of the aplet, shown right. This aplet has only the one screen, rather than the usual PLOT, SYMB and NUM views. If the aplet has been used before
 screen key to go back to the opening view.


The first choice made by the user should be the LEDEL. The default level is that of \(\mathrm{Y}=\mathrm{a}(\mathrm{X}+\mathrm{h})^{2}+\mathrm{v}\), which allows the student to change all parameters at once. By having the student choose the levels of \(Y=a X^{2}, Y=(x+h)^{2}\) or \(Y=X^{2}+v\), the teacher can confine the study
 to the effects of only one coefficient at a time if desired.

The default state for the aplet is to be in \(W\) FPHD mode. In this mode the student uses the keys listed below to control the appearance of the graph, with these changes reflected automatically in the two equations on the right half of the screen. The original \(y=x^{2}\) graph is
 kept on the screen (dotted) for comparison and a grid is supplied to allow the user to see movement more clearly.

The control keys (listed onscreen) are:
\(\uparrow \downarrow \rightarrow \leftarrow \quad\) moves the graph in the obvious way.
+ and - cycles the value of ' \(a\) ' in \(y=a(x+h)^{2}+v\) through the values \(0.1,0.2,0.3,0.5,1,2\) \& 5 .
(-) (the 'negative' key) changes the sign on the 'a' coefficient turning the graph upside down.

As can be seen in the screen shots right, the bottom half of the screen shows the roots (if any), the value of the discriminant and the equation in the form \(y=a x^{2}+b x+c\).


The key labeled [ix 1 changes the 'step size' of the movements on the screen. Possible values for the increment are 0.5, 1 and 2.

Pressing SYMB on the calculator, or the screen key labeled ETHIE will change the emphasis from the graph to the equation in the right hand half of the screen. Pressing PLOT on the calculator, or the key labeled [TFHD will change the emphasis from the equation back
 to the graph.

In EPTIED mode the student can change the coefficients directly and see the changes reflected in the graph.

For example, on the screen shown below, the ' \(v\) ' coefficient is highlighted and can be changed using the \(\uparrow\) and \(\downarrow\) keys. The size of the changes to ' \(h\) ' and ' \(v\) ' is controlled by the ITC 1 key, and the same range of values is available for the values of 'a' as in WFHD
 mode. You can move from one coefficient to the next by using the \(\rightarrow\) and \(\leftarrow\) keys.

As with the mode, the equation in \(y=a x^{2}+b x+c\) form, its roots and its discriminant are shown on the right half of the screen.


The sequence of three screen shots right show how the axes automatically re-position to allow a larger range of values to be explored. There is a limit to how far the graph can move.


The + and - keys are disabled in STHIEM mode, since their effects are controlled instead by the \(\uparrow\) and \(\downarrow\) keys once the highlight is on the ' \(a\) ' coefficient. The (-) key controls the sign of 'a'.
\begin{tabular}{|c|c|}
\hline  & \[
(x+h)^{2}+y
\] \\
\hline . & \\
\hline . & \\
\hline  & \\
\hline Helini menevalevel & |RNESN| ERTI \\
\hline
\end{tabular}

The final key is labeled TETT. This key will present the student with a series of graphs for which they must supply the equation. The type of graph is governed by the current setting of LEWUL. For example, if the current setting of LEMEL was at \(Y=X^{2}+v\) then the test graphs would also only use the \(v\) parameter instead of \(a, h\) and \(v\) simultaneously. The setting of LEDEL can be changed within the TET screen using the key supplied.

There are two levels of 'questions' denoted by the keys EiETD and HFRID on the screen. An Eitsil question will be in the main screen ( -5 to 5 on each axis), whereas a Hillil one can be anywhere in the larger screen (see right). The setting of LEWEL also affects the difficulty of the question. The first is always GHED but you can substitute another by pressing EHETO or HEFID.

In TEST mode you must use the arrow keys to change the parameters ' \(a\) ', ' \(h\) ' and ' \(v\) ' until they match the graph shown. The accuracy of your answer can be checked by pressing the key labeled CHECR, which appears as soon as you begin to change the values. The number of attempts is monitored and displayed.


An incorrect answer is shown as an 'animated' graph on the screen when you press CHECH, flashing repeatedly between the required graph and your incorrect guess. This has to be seen to be appreciated - a screen shot can't do it justice. If your guess and the required graph can't be shown on the same screen then this animation may not be possible. If you are unable to


When you are successful, or when you give up, press either EnETD or Bill for a new graph, or EETH to return to the main screen.

If you go to HP's website you can download a worksheet for use with your class. It takes the student through the process of deducing the effects of each of the coefficients on the shape of the graph, requiring them to record their answers in writing.

\section*{The Trig Explorer Teaching Aplet}

Rather than being a multi-purpose aplet like most of the others covered so far, this is a teaching aplet specialized to the single use of exploring the graphs of trigonometric functions.

\section*{Objectives}

Using the Trig Explorer aplet, the student will investigate the behaviour of the graph of \(y=a \sin (b x+c)+d\) as the values of \(a, b, c\) and \(d\) change. This can be done both by manipulating the equation and seeing the change in the graph, or by manipulating the graph and seeing the change in the equation.

When the student presses ETilisi, they will see the main screen of the aplet, shown right. Like the Quadratic Explorer, this aplet has only one screen, rather than the usual PLOT, SYMB and NUM views. If the aplet has been used before
 then it may be necessary to press the EESET screen key to go back to the opening view shown.

The EIN (or LIED) key can be used to toggle between the \(y=\sin (x)\) curve and the \(y=\cos (x)\) curve. The Filil (or [DED) key can be used to toggle between radian measure and degree measure. The markings on the horizontal axis adjust accordingly (see right).

The Trig Explorer aplet can be used in two
 modes:

SYMB mode - the equation controls the graph (press the SYMB key).
and PLOT mode - the graph controls the equation (press the PLOT key).

Which mode is in operation is controlled by pressing the SYMB and the PLOT keys. The NUM key has no effect in this aplet and the aplet has no SETUP views. The ranges for the \(x\) and \(y\) axes are preset and cannot be changed.

In both modes the original shape of the sine or cosine graph is left visible as a dotted line for comparison.


The operation of the two modes is summarized below.

\section*{PLOT mode}

The underlying concept in PLOT mode is that the graph controls the equation.


The user has control of the graph via two manipulation points (see above and below) and any changes to the graph are reflected in the equation at the top of the screen.

Looking at the screens on the right it will be seen that the third screen key toggles the point of control for the graph. It is only visible in PLOT mode.


When in PLOT mode the graph is changed using the arrow keys. The effects of the arrow keys vary according to the location of the control point.
- when control is set to 마지 the graph translates left and right (the c coefficient) or up \& down (the \(d\) coefficient).
- when control is set to ERTia the graph dilates parallel to the y axis (the a coefficient) or parallel to the \(x\) axis (the \(b\) coefficient).


Unlike the SYMB mode where the \(b\) coefficient goes up or down in steps of 0.1 , the increments in PLOT mode are not regular but are chosen to be 'nice' fractions of \(\pi\). The slight difference in results is most easily seen by simply experimenting.

\section*{SYMB mode}

The underlying concept in SYMB mode is that the equation controls the graph. The user has control of the coefficients and any changes are reflected in the graph.

All four coefficients are shown at the top of the screen even when one or more is redundant.


The \(c\) coefficient is shown as a multiple of \(\pi\) in radian mode rather than as a decimal. The currently active coefficient is highlighted and can be changed using the up/down arrow keys in increments of 0.1 for the coefficients \(a, b\) and \(d\).

The default increment for \(c\) is \(\pi / 6\) but this can be changed using the key labeled [imili to either \(\pi / 9\) or \(\pi / 4\).

When in 맘 mode, the increments are \(20^{\circ}\), \(30^{\circ}\) or \(45^{\circ}\) with \(30^{\circ}\) being the default.

The ranges of values available for the four
 coefficients are shown below:
\begin{tabular}{c|l} 
Coeff. & Range \\
\hline\(a\) & -3 to 3 \\
\(b\) & 0.2 to 5 \\
\(c\) & \(-4 \pi\) to \(4 \pi\) \\
\(d\) & -3 to 3
\end{tabular}

If you go to HP's website you can download a worksheet for use with your class. It takes the student through the process of deducing the effects of each of the coefficients on the shape of the graph, requiring them to record their answers in writing.

\section*{Using Matrices on the hp 39G+}

The hp 39g+ deals very well with matrices. It offers many powerful tools as well as a special MATRIX Catalog with full editing facilities.

The MATRIX Catalog is entered by pressing the MATRIX key (located above the 4). It allows for the storage of ten matrices (M1, M2 , . M9, M0) which can be any size, depending only on available memory. In the example shown right, the catalogue contains two matrices, a \(3 \times 3\) and a \(3 \times 1\). The reason that the catalogue specifies that they are 'real matrices' is that the hp \(39 \mathrm{~g}+\) is capable of storing and manipulating not only matrices of real numbers but also matrices of real vectors, complex numbers and complex vectors. The
\begin{tabular}{|c|c|c|}
\hline - 1 er & Métrila & E0 \\
\hline H1 Ext FEFEL & Seil mithis & .08ke \\
\hline H2 381 FEAL & Eal kiatria & . 0 ESE \\
\hline H13 141 FEAL & Eal kiatrily & OKE \\
\hline 1 Cl 41 l FEAL & Eet katain & OKE \\
\hline 14.5181 FEAL & Eet katain & OKE \\
\hline  & & CT \\
\hline
\end{tabular}
 [HEWI key pops up the menu shown on the right, replacing the highlighted matrix with any empty one of the new type that you specify. Press SHIFT CLEAR to delete all.

Generally only the default type 'real' is required and, apart from small exceptions, only those will be covered as the behavior is not significantly different for others.

Matrices, like most other objects on the hp \(39 \mathrm{~g}+\), can be sent to and received from a computer or another hp 39g+ using the EERTD and FED keys.

We'll begin by entering a matrix into the catalogue to practice simple editing. If there are any matrices currently in the catalogue, use SHIFT CLEAR to delete the whole catalogue. Move the highlight to matrix M1 and press the EDIT key. The normal state for a
 blank matrix is to contain nothing but a single zero, which is why they all register as \(1 \times 1\) even after erasure.

If you look at the list of screen keys on the bottom of the view, you will see one labeled [0]. This determines which way the highlight will move (across or down) when you enter a number. If you press the key repeatedly you will see it change from [1]
 (across), to [-4 (down), to [G] (no movement).

You will also see the usual EITE key, and an INE key that can be used to insert an extra row or column into an existing matrix. The keyboard DEL key can be used to delete a row or column.


With movement set to [G], type in the numbers 1, 2 and 3, pressing ENTER after each. Your display should now look like the screen shot right.


If you now press the down arrow key on the keyboard the highlight will move back to the first element in the second row. Enter the numbers 4,5 and 6 and you will find that the calculator automatically drops down to row three without the need to use the down arrow
 key again, since it now knows how many columns the matrix is to contain. Finish your matrix so that it looks like the one shown right.

Now press MATRIX to switch back to the MATRIX Catalog and, with the highlight on M2, press EDIT and create the matrix shown right.
\(\left[\begin{array}{cc}2 & -1 \\ 3 & 4 \\ -1 & 7\end{array}\right]\)

Switch to the HOME view and multiply M1*M2. As you can see, the result displayed in the HOME view is not very useful or readable. Pressing 탬N displays the matrix in a far more readable manner.


Another method is to store the result into a third matrix and then to view it through the Edit screen of the MATRIX Catalog. This is shown below.


Matrix M3 is created left and edited right.


Probably the most common functions that you will use are INVERSE, DET and TRN (transpose), so some worked examples are included which use them. There are also a number of further worked examples involving matrices in the section at the back of the book.

Eg. 1 Solve the system of equations: \(\left\{\begin{aligned} 2 x+3 y-z & =-6 \\ x-3 y+z & =12 \\ 3 x-y+4 z & =13\end{aligned}\right.\)

Solution: The system of equations can be represented as the system of matrices:
\[
\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -3 & 1 \\
3 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-6 \\
12 \\
13
\end{array}\right]
\]
this system can be algebraically rearranged to:
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -3 & 1 \\
3 & -1 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
-6 \\
12 \\
13
\end{array}\right]
\]
where the inverse matrix is...
\[
\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -3 & 1 \\
3 & -1 & 4
\end{array}\right]^{-1}
\]
which gives a final answer of \(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]\)

Mathematically what we have done is:
\(A x=b\) where A is the coeff. matrix and b is the constant matrix.
\[
x=\frac{1}{A} \times b
\]
which is usually written as: \(x=A^{-1} \times b\)
or as: \(x=\operatorname{inverse}(A) \times b\)

The method for doing this on the \(\mathrm{hp} 39 \mathrm{~g}+\) is as follows...

Step 1. Enter the MATRIX Catalogue. Use SHIFT CLEAR to erase all matrices.

Step 2. Enter the \(3 \times 3\) matrix of coefficients in M1.


Step 4. Change to the HOME view, evaluate \(A^{-1} \times b\) using any of the following three methods (all of which are acceptable to the hp \(39 \mathrm{~g}+\) ), and store the result into M3.
(a) \(M 1^{-1} * M 2\)
(b) \(M 2 / M 1\)

(c) INVERSE (M1) *M2

The best of these is probably (a) because it doesn't involve fetching the INVERSE function from the MATH menu and, unlike (b), reminds you that the operation is really left-multiplication by the inverse rather than division, an operation which is not strictly speaking defined for matrices but is allowed for convenience on the hp \(39 \mathrm{~g}+\).

The answer displayed is [[2], [-3], [.999999999999]]. This is really the same as \(x=2, y=-3, z=1\). The strange answer for \(z=1\) is caused by internal precision errors. You are expected to realize yourself that it should be \(z=1\).

Eg. 2 Find the inverse matrix \(A^{-1}\) for the matrix \(A=\left[\begin{array}{ccc}2 & 1 & 4 \\ 1 & 1 & 3 \\ -2 & 4 & -1\end{array}\right]\)

The first step is to store the matrix A into M1. If you now simply store its inverse into M2 you will find, depending on the determinant, that the result is probably a collection of decimal values (see right).


While correct, this is hardly the best way to display the answer. The fact that the determinant is incorporated into the inverse makes whole numbers unlikely.


A better way is often to write the answer as a fraction \(\frac{1}{\operatorname{det}(A)}\) multiplied by a matrix of whole numbers. If we multiply the inverse by the determinant then we can usually remove the fractions.
i.e.


Thus we can finally write: \(A=\frac{1}{-7}\left[\begin{array}{ccc}-13 & 17 & -1 \\ -5 & 6 & -2 \\ 6 & -10 & 1\end{array}\right]\)
An alternative to this is to change into Fraction 6 numeric format in the MODES view. This will give a matrix of fractional values which can be seen more clearly using NㅐN.


Eg. 4 Find the angle between the vectors \(a=(3,4)\) and \(b=(4,1)\).


Using the formula that
\[
\underline{a} \bullet \underline{b}=|\underline{a}| \cdot|\underline{b}| \cdot \cos \theta
\]
where \(\underline{a} \bullet \underline{b}\) is the dot product, we can rearrange to obtain:
\[
\begin{aligned}
& \cos \theta=\frac{\underline{a} \bullet}{|\underline{a}| \cdot \underline{b} \mid} \\
& \cos \theta=\frac{(3,4) \bullet(4,1)}{|(3,4)| \cdot|(4,1)|} \\
&=\frac{3 \times 4+4 \times 1}{\sqrt{3^{2}+4^{2}} \cdot \sqrt{4^{2}+1^{2}}} \\
&=\frac{16}{5 \sqrt{17}} \\
& \theta=39 \cdot 09^{\circ}
\end{aligned}
\]

On the calculator, the functions DOT and ABS give the dot product and magnitude respectively, when fed with vectors. The \(\mathrm{hp} 39 \mathrm{~g}+\) writes vectors as row matrices. For example \(a=(3,4)\) would be written as \([3,4]\).

The calculations are shown in the two screen shots on the right. Remember to change into degree mode first.


苳[10 ARE ( \(\mathrm{AB} \mathrm{B}([3,4]) \times \mathrm{ABS}([\) ALOS(Ans) 77611466116 39.6938586863

The list of matrix functions available through the MATH menu is covered starting on page 271. Not all functions are covered, since many of them go far beyond the requirements of the average student at whom this book is aimed.

\section*{Using Lists on the hp 39G+}

A list in the hp 39g+ is the same mathematically as a set. As with a set, it is written as numbers separated by commas and enclosed with curly brackets.

Eg. \(\{2,5,-2,10,3.75\}\)

Using the HOME view these lists can be stored in special list variables. There are ten of these L1, L2, . . L9, L0 .

Eg. \(\quad\{2,5,-2,10,3.75\}\) L1

Typing L1 and then ENTER will then retrieve the list. Lists can also be multiplied by a constant and have a constant added to them (see below)


If we store another list of the same length into L2, then the two lists can be multiplied together. The resulting list is obtained by multiplying each element in the first list by the matching element in the second list.

Many of the normal mathematical functions also work on lists of numbers by performing the operation on each individual element. Lists on the hp \(39 \mathrm{~g}+\) can contain more than simply numbers. For example, the return value for some matrix functions is a list where each element is a matrix. Elements of a list can be matrices, lists and other things..

The column variables C1, C2 . . C9, C0 in the Statistics aplet are actually list variables attached to their aplet and can be used as extra storage if you need more list variables.
 The statistical variables have the additional advantage, of course, that they can be graphed in the Statistics aplet and with all the usual statistical analysis measures available. To transfer a list variable to a statistics variable, just store one into the other (see right). As you can see in the second view, the
 list has been transferred to C1. Pressing ETiTE would now give the usual statistical measures for the newly created column.

There are also a number of special functions available for list variables which are contained in the List group of functions in the MATH menu. See page 265.

A special List Catlogue is provided which allows easier entering and editing of lists. If you look above the 7 key you will see a label of LIST which gives you access to this catalog. When you enter this catalog you will see the screen on your right.


Pressing the DEL key when on one of these lists will delete that list, clearing the memory it uses. Pressing bLUE CLEAR (above the DEL key) will clear all lists. In both cases a query message pops up asking whether you are sure you want to do this.

If you press the EDIT key then you will enter a special editing screen which allows you to change individual values, delete values (using the DEL key) and insert new elements into a
 list. If you press the THEI key with the highlight in the position shown, then a zero is inserted before the 4, with all the elements below shifted down one position. You can then type your new number.

Having entered the editing screen, you may be wondering how to exit, since no key is apparently provided for this. Simply press SHIFT LIST again to return to the catalog level (or press HOME if you've finished altogether).

Changing of individual elements of a list can also be done in the HOME view, if not quite so easily. As we saw earlier, typing L1 and pressing ENTER will display an entire list in the
\begin{tabular}{|c|c|c|}
\hline  & \$ HOFFIE: & [5\% \\
\hline 5-L1(3) & & \\
\hline ETIW & & \\
\hline
\end{tabular} HOME view. If you want to see just element 3 , for example, then typing L1(3) will display just that one element (see right). As you can also see, you can change just one element using the store command. It is not possible to insert an extra element, except in that you could add an element to the end of a list using the CONCAT function discussed on the next page.

Lists can be sent from one hp \(39 \mathrm{~g}+\) to another using the infra-red link with the aid of the two keys labeled EERTD and FECM. The procedure is the same as that for sending aplets from one calculator to another.


\section*{Using the Notepad Catalog}

The hp 39g+ provides access to Notes which can be either attached to an aplet or created as independent notes for any use. The notes belonging to the standard aplets are blank unless you add to them, but copies you transfer from another calculator may have had notes added to them. In particular, any special aplets you download to your calculator from the internet (perhaps via a teacher) may have instructions as a note and/or perhaps a sketch.

Every aplet has a note attached to it even if it is blank. This note is available via a key labeled NOTE (above the APLET key). Thus an instruction to 'press NOTE' refers to the aplet Note.


In addition to this, there is a Notepad Catalog containing independent notes which is available via a key labeled NOTEPAD found above the ' 0 ' key. Thus an instruction to 'press NOTEPAD' refers to the Notepad Catalog, not to the aplet Note.


Notes attached to aplets are explained in the chapter "Using, Copying \& Creating Aplets" on page 189, so only a brief example is given.

The Slope Fields aplet is one that can be used to introduce calculus students to the concept of fields of slopes. It has been downloaded onto my calculator from the HP HOME view web site (http://www.hphomeview.com) on the
 internet and it is now found on the APLET key.


If you Cibld the menu and press NOTE then you would see the Note attached to the aplet. This is common with these aplets. Since they are non-standard, the author ensures you have some instructions, although most of the documentation is generally in a Word \({ }^{\circledR}\) or \(\mathrm{PDF}^{\circledR}\) document that comes with the aplet. This particular set of notes consists of a number of pages, but most are not that extensive.

Some aplets also have sketches attached to them but this consumes approximately 1 Kb of memory per sketch and so was not common on the hp 38 g , which only had 23 Kb and so didn't have a lot to spare. On the hp 39g+, as programmers become used to having plenty of memory to use, aplets have become larger and more powerful.


Aplets may also have an attached sketch which is transmitted with it when it is downloaded. This is empty by default but programmed aplets may use it. An example is shown right of a sketch from one of the aplets
 available from HP's web site called 'Periodic'. This can be viewed via the SKETCH key above the MATH key. Sketches can have multiple pages and are covered on page 184.

\section*{Independent Notes and the Notepad Catalog}

Most users are far more concerned with the Notepad Catalog. Notes held in it are independent of any aplet rather than being attached to only one, and can be sent to and received from another hp 39g+ or a computer via the EEND and FECD keys in the Notepad Catalog.

The Notepad Catalog can be used to hold an textual material. For example Physics information or your mathematics homework. As an exercise here, we will develop a stand-alone Note containing some common formulas.

What notes you are allowed to keep and take into tests is a matter for your school's or university's policy. It is not a good idea to cheat by taking illegal material into a test or examination. Quite apart from any other reason, it could result in severe penalties.


Notes can be shared between friends since they can be transmitted over the infra-red link in the same way as can be done for aplets, lists, matrices and programs. It is worth pointing out that this will not help you in a test situation, since the strength of the infra-red link in the hp \(39 \mathrm{~g}+\) is such that it will only operate over extremely short distances. It's going to be pretty obvious what you're doing if you try to transmit messages by exchanging Notes in a test when you have to be within \(8-10 \mathrm{~cm}\) of your friend's calculator.

Notes also consume memory. Even on the hp \(39 \mathrm{~g}+\), if you accumulate enough Notes you will eventually find that you run out of space. See page 37 for information on the hp 39g+ memory.

In addition to this, the hp 39g+ was never designed nor intended to be a typewriter. Inputting text is a slow process. As you begin to become more familiar with the positions on the keyboard where the various letters of the alphabet can be found your typing speed will improve, but it will never remotely compare to typing on a keyboard.

If you want to prepare anything more than small Notes then software is available to allow you to edit Notes on a computer. See page 211. For the hp 38 g and hp 39 g it is necessary to purchase a special cable to connect to the serial port on a PC and the software will work only on Windows computers. For the hp 39g+ the cable is supplied with the calculator to allow you to connect to the USB port. The hp 39g+'s software should work on either a PC or a Mac.

As was discussed on page Error! Bookmark not defined., at the time of writing this book the software situation was in the process of changing so the information which follows may be out of date.

For the latest version of the software for your calculator you should consult Hewlett Packard's web site (http://www.hp.com/calculators) or The HP HOME view (at http://www.hphomeview.com).

\section*{Software}

\section*{For the hp 38g, hp 39g \& hp 40g}

The HP Connectivity Kit, called HPGComm, is discussed in detail on page 204. It allows users to
 transfer aplets and all other HP objects such as notes from calculator to PC via the serial port. It does not let you edit them in any way.

However there is also a free piece of software called the Aplet Development Kit available over the internet from HP's web site (http://www.hp.com/calculators) or The HP HOME view (at http://www.hphomeview.com) which edits notes \& programs. See page 211.


There are two versions of the ADK, one for the hp 38 g and one for the \(\mathrm{hp} 39 \mathrm{~g}, \mathrm{hp} 40 \mathrm{~g} \& \mathrm{hp} 39 \mathrm{~g}+\). All of this software will only run on a Windows computer and requires that you have a cable and a serial port on your computer. Some newer models of computers do not have a serial port.

More information on both of these programs is given on pages 204-211.

\section*{For the hp 39g+}

At the time of writing the hp \(39 \mathrm{~g}+\) had only just been released and new software was in the process of being developed. The hp \(39 \mathrm{~g}+\) is supplied with a cable that lets it link to the USB port on a PC or a Mac. The software being developed should run on any platform, including Unix, and will allow the transfer of objects such as aplets, programs or notes.

The Aplet Development Kit (see picture above) performs editing once the object is transferred to the PC. Make sure that you get the version of the ADK which edits objects from an hp 39g, hp 40 g or hp \(39 \mathrm{~g}+\). It will only run on a Windows computer and requires that you have a cable (supplied with the hp 39g+) and a USB port on your computer.

If you are reading this information then it might be worth checking to see if there is a newer version of this book available on HP's site. The intention at the time of writing was to update this section once the new software was released.

\section*{Creating a Note}

Let's create a small Note containing some commonly used formulas. Press SHIFT NOTEPAD (not SHIFT NOTE ) and you will see the Notepad Catalog shown right. Yours will probably be empty.


The keys at the bottom of the screen allow you to EDIT an existing Note, create a [NEA one or to EEND and FEDN Notes to or from another hp 39g+ (or a computer). A Note is deleted using the DEL key, while the SHIFT CLEAR key will delete all Notes in the catalog.

Press the Nㅐㅌㅚㅚ key to begin a fresh Note. You will be presented with the screen on the right, requesting that you enter a name for the Note. Names can be any length and can contain any characters, alphabetic, numeric, spaces as well as any from the CHARS menu. However, if the name is longer than 14 characters it will be truncated in the display because of the space taken up by the indication of how much memory is used. When you press ENTER after typing in the
 name, you will see a blank screen waiting for you to begin typing in your Note.

Before we begin, a word about making your typing easier. The normal method to enter an alphabetical character is to use the ALPHA key. Lowercase letters are obtained by pressing SHIFT first. The ALPHA key can be held down with one hand while you type with the other, but this isn't convenient and lowercase can't be locked this way. Space can be obtained via ALPHA SPACE, with SPACE located on the \(+\boldsymbol{+}\) key.

At the bottom of the screen in the Notepad view you will see screen keys labeled 내르, EPFIG and EKEP (backspace). If you press Hiz then all the keys from then on will type their alphabetic values rather than their normal mathematical functions. Pressing the SHIFT
 key first before the Him key will lock it into lowercase rather than into
 there purely for your convenience since it is also on the keyboard.

Use the keys discussed above to type in the screen shown on the right. The arrow keys can be used to move around in the text and insert or delete characters.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Common formiglae} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \(\bar{A}=4 \pi r^{-2}\) & (Spherre) \\
\hline |SPitse & \\
\hline
\end{tabular}

In this case we don't need it as all the characters are on the keyboard, but you should remember that additional characters can be obtained through the CHARS view. The three pages of the CHARS view are shown below. As you can see, there are many special characters available for use.


Once you have finished, and perhaps added some more formulas of your own, just press SHIFT NOTEPAD again to return to the catalog level. You will find that your new Note is now listed. There is no need to save your note, it is saved as you work - just exit when finished. Unfortunately this also means that there is no way to undo a mistake by reverting to a previously saved version.

You may wish to now try transferring your Note to a friend's calculator over the infra-red link using the SERTD and EECW keys.


An occasional problem users encounter is finding that the Notes they have saved onto a computer are corrupted when they try to read them back. This is almost invariably caused by trying to open, read, print or otherwise tamper with the Note while it is on the computer. If you view the file once it has been stored by double clicking on it to try to open it then the computer may try to edit it with one of the word processors you have installed. If you allow this and save the result then all sorts of characters will be inserted into the file that will make it unreadable by the calculator. If you find that you have unintentionally opened a file in this way then exit from the word processor without saving.

Calculator Tip
Only the proper software should be used to edit Notes on a computer.

\section*{Using the aplet Sketchpad}

If you have not already done so, read the previous chapter. As is explained there, every aplet has associated with it a Sketch, consisting of up to ten pages. It can be viewed by pressing SKETCH, which is located above the VIEWS key.

Sketches for the standard aplets start blank but you may find that an aplet that you download from the Internet will have a Sketch attached. Remember a Sketch is always attached to an aplet, so changing aplets makes it inaccessible.

Facilities provided in the Sketch view are good for a bit of fun, but very primitive when you try to do anything at all complex. This is not meant as a criticism of the calculator. It does an extremely good job at what it was designed for - working with numbers - but it was never designed to compete with a computer drawing package.

When you first enter the Sketch page on your hp 39g+ you will see the view at the top right. There are four screen keys available. The TEXT key allows you to place strings of text on the screen.

If you press TEXTT then you will be prompted to enter a string of text at the bottom of the screen. An Elez key is provided to lock in alphabetic keys.

When you press ENTER, a rectangle will appear in the middle of the screen. The rectangle is the same size as the text will be. Using the arrow keys you can now move the text to the position in which you want it and then press ENTER again to fix its position.


There are two font sizes available via the EII - key, with the default size being large. If you press the EIG key then it will change to
EIG. Although there is no apparent change when you are typing in the text, the font will become smaller when it appears in the


STIF HENP thls IS Shall tert window. Only uppercase is available in this small font. New sketch pages can be produced by pressing the 샞랑 key.

\section*{The DRAW menu}

The DFifin key gives access to a slightly enlarged menu of simple drawing tools. The [0K key seen on the far right exits from this
+hello World!
 menu back to the original one.

The small cursor (cross) in the middle of the screen can be moved around using the arrow keys. If you press the screen key labeled [IIT+ then a trail will be drawn as you move the cursor. Notice the small dot next to the \(\square \mathrm{DT}+\boldsymbol{\square}\) showing that it is engaged.


Pressing the [DIT- key turns the cursor into an eraser (and automatically disengages [IT+■ as well). Pressing the same key again disengages both keys and leaves the cursor free to move with no effect on the Sketch.


Moving the cursor to one end of a proposed line, you can now press the LIINE key and move the cursor to the other end of the line. When the line is correctly positioned, press the OK key (or Cililli).


A box is drawn in the same way. Position the cursor at one corner, press the EDH key, move the cursor to the diagonally opposite corner and press OK.


The circle command is similar. You should position the cursor at the center of the proposed circle. Pressing CIELL, move the cursor outwards from the center, forming a radius. As you do so you will see a small arc appear, giving you an indication of the curvature of the circle.

Pressing [0K (or ENTER) will then complete the circle.


Finally, press [KK to leave the drawing tools view.

Using the ETIT key you can capture part of the screen and store it into any of ten graphics memories G1, G2 . . G9, G0 (called 'GROBs', which is short for graphics objects). When
 you press STIT the message you see on the right will appear, asking which GROB to use.

Once you have chosen a GROB in which to store the screen capture, you will need to specify the corners of the rectangle to be
 captured.

Once an image is captured, it is possible to paste the captured screen portion into the a Sketch page using the VAR key. The screen does not have to be blank but to make things clearer, create a new sketch page using the NIEAP key (see right). Notice the appearance
 of a new Prigl key to allow movement between pages.

Press the VAR key and, when you see the screen shown right, press the key labeled 페표.


Move down through the menu until you reach Graphic and across to the particular GROB you chose. Now also press the key labeled WiLII and then press DK






This technique can be very useful in building a Sketch, particularly when used in conjunction with the ability to capture PLOT screens and store them in GROBs (see below). You can also use it to create animations by pasting the same image in successively moved locations on each of the pages. Holding down the PiGE \(?\) key will move rapidly through the sketches, animating them. If you can program then you can even automate the animation quite simply.

To capture a PLOT screen, just arrange the PLOT display so that it shows the features you wish to capture. For example, if you don't want the screen menu showing, make sure it is set up that way before you proceed. When ready, press and hold down the ON key, then
 press the PLOT key and release both. The screen will be automatically stored into GROB G0.

Now change into the sketch view, press the VAR key, select HDसी rather than Hillil, move the highlight to Graphic and then move it into the righthand column and find G0. Press the WiLIJ key and then press ENTER. Unlike the previous example where the pasted GROB now had to be located on the sketch page, the captured screen in this case is a full size image and so will be pasted in as a fresh page not over an existing one.

Having pasted it into the Sketch page, you can now modify it by adding text and other information.


One has to question however whether the time needed to do this and the crudity of the result make the whole process worthwhile. If you're intending to do this to produce a set of 'cheat notes' for your next test or exam, you would do better to spend the time studying!

\section*{Calculator Tip}

The screen capture facility demonstrated here can be used to capture any screen as a GROB, not just a PLOT screen. Pressing ON+PLOT at any time will store an image of the current screen into G0. See page 210 .

\section*{Using, Copying \& Creating aplets}

Before you read this chapter, you should be reasonably familiar with the majority of the built-in aplets.

As has been discussed before, the designers of this calculator provided a set of standard aplets for you to use, changing the capabilities of the calculator as you change aplet. These standard aplets will cover most, if not all, of your requirements but to a certain extent you can also modify them to suit your needs and copy them for your friends. No programming is generally required and, unless you want to learn about the programming language of the hp \(39 \mathrm{~g}+\), there is no reason to worry about it.

As well as making small modifications to the standard aplets, you can download additional aplets written by people who do enjoy programming. These aplets come via the Internet, but you may be able to obtain them from your teacher, from other hp 39g+ users, or from a PC or Mac onto which they have been copied. Once aplets have been copied from the Internet (onto a PC or Mac) the software and cable provided with your hp 39g+ can be used to download the aplets to the \(\mathrm{hp} 39 \mathrm{~g}+\).

\section*{Calculator Tip}

Aplets which were written for the hp 38 g or stored from an hp 38 g are not compatible with the hp 39 g , hp 40 g or \(\mathrm{hp} 39 \mathrm{~g}+\). On the other hand, aplets are freely interchangeable between any of the hp 39g, hp 40 g and hp \(39 \mathrm{~g}+\). A free utility is available which will convert hp 38 g aplets into hp \(39 \mathrm{~g}+\) aplets. Many of the aplets on web sites are available in both formats but far more are available for the \(\mathrm{hp} 39 \mathrm{~g}+\).

The information which follows is discussed in the following order...
- creating a copy of a standard aplet
- copying from hp \(39 \mathrm{~g}+\) to \(\mathrm{hp} 39 \mathrm{~g}+\) via the infra-red link.
- downloading from the Internet using the Connectivity Kit.
- saving notes, aplets and sketches via the Connectivity Kit.
- capturing screens using the Connectivity Kit.
- editing Notes with the Aplet Development Kit.

The creation of new aplets on the hp 39g+ via programming is covered in the chapter which follows this one on page 212.

\section*{Creating a copy of a Standard aplet.}

Imagine either of these two scenarios....
(i) you are a student and you have filled the Function aplet with a set of equations needed for tonight's homework and set up the PLOT screen so that it looks exactly the way you want it to. Now you find that you need the Function aplet to do something else equally important which will mean wiping all that work.
(ii) you are a teacher and you are planning a lesson where you will examine a collection of about half a dozen data sets and graph the results. You don't want to spend half the lesson waiting while the students type the data into the Statistics aplet and then watch while they all use different axes and get totally different graphs.

In either of those two cases, the solution is to make a copy of the aplet concerned. You can make as many copies of any of the standard aplets as you wish, with the only limit being the calculator's memory.

Let's look at each of the two scenarios in turn.

In the first case, what the student needs to do is to make a copy of the Function aplet to hold his homework (the functions he had already set up) and then do the unexpected extra work in the original Function aplet which is now free.

Press the APLET key to see the list of aplets. Move the highlight to Function (or whichever one you wish to copy) and press the screen key labeled SiNE.

You will now be asked to nominate a name for the newly created aplet. It is a good idea to name it something that will remind you of its purpose and contents later. After all, you may end up saving it permanently onto a PC or Mac using the Connectivity Kit and when you look at it six months from now a name of "Homework" is not going to tell you much. Your name can contain spaces and any other
\begin{tabular}{|c|c|}
\hline fPLET LIERAFY &  \\
\hline \multicolumn{2}{|l|}{Funct ion} \\
\hline Sequence & . 91 kB \\
\hline Parametric & . 686 E \\
\hline Inference & [18 \\
\hline Polar & व18 \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{NEW HAME: Funiction} \\
\hline \multicolumn{2}{|l|}{Graphs 1\%MN} \\
\hline fine & Crinct \({ }^{\text {de }}\) \\
\hline APLET Llerifit & [:0x] \\
\hline Graphe 1*** & -E4KE \\
\hline Function & . BEKE \\
\hline Sequence & . 91 kE \\
\hline Parametric & . 08 KE \\
\hline Inf erence & S \\
\hline  & EECM|STAFIT \\
\hline
\end{tabular} characters, including those from the CHARS menu.

Our student's newly created copy of the Function aplet is now totally independent of its parent aplet. She can now (if she wants to) FElll the original Function aplet back to factory defaults and go on with the extra work that she wanted to do. A saved aplet cannot be Reser

Our second scenario had a teacher not wanting to waste the time that would be needed for his students to type in five sets of data. In this case also, the solution is to make a copy of the aplet - in this case of the Statistics aplet.

First set up the Statistics aplet to be exactly the way you want it... for example five data sets of 20 numbers, NUM view set to univariate stats ([Wilia), SYMB view set up for five Box and Whisker graphs, axes set up to display all five sets. See page 122 for information on the Statistics aplet.

The next stage is to move to the APLET view and sind this modified Statistics aplet under a new name - say "Related Sets". If desirable, you might also \(\mathbb{E T E T}\) the original Statistics aplet at the same time, ready for next use.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ITM S STATISTISS PLOT SETUP:} \\
\hline Sthtplat: Efoxil Hill & H上IbTH: \\
\hline Xfigi - 30 & 20 \\
\hline YFins: -2 & 10 \\
\hline HFNG: 0 & 2G1000 \\
\hline SELECT statistics plat & Cs PLat type \\
\hline CHID Phta & prat \\
\hline
\end{tabular}

KIWシSTATISTIGS STMEDLIG VIEN
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& \mathrm{HE}=\mathrm{C} \\
& \mathrm{H}=\mathrm{E}
\end{aligned}
\] \\
\hline WH4: 6 \\
\hline -15: [5] \\
\hline
\end{tabular}

EHTEF SAl-APLE
EDJT FTHE [


This saved aplet can now be downloaded to all the students' calculators using the infra-red link, ensuring each student has the data sets, with its views pre-set to the teacher's needs.

An ambitious teacher might even complete his aplet by adding a set of instructions to the Note which is associated with the aplet. This would allow an absent student to download a copy from a friend's hp 39g+ and then read up on what they are supposed to do.

Indeed, if the students have access to the Internet and a Connectivity Kit themselves, then there is no reason that the teacher could not post the aplet on the department's web page for downloading by any students who need access.

In both of these cases, the procedure has been to save a copy of one of the standard aplets under a different name. In neither case was there any need to do any programming and the amount of memory taken up by these copies is fairly minimal because they share most of their resources with their parent aplets.

\section*{Some examples of saved aplets}

\section*{The Triangles aplet}

In the APLET view, RESTT the Solve aplet and Eriva it under the new name of "Triangles". Now STiliti it and enter the formulas shown right.


The \(\boldsymbol{\theta}\) character can be found in the second page of the CHARS view. Change into the MODES view and set the angle mode to Degrees (unless you want to use another mode). Use this to solve problems in right triangles.

\section*{The Prob. Distributions aplet}

In the APLET view, FEETT the Solve aplet and EFill it under the new name of "Prob. Distr.". This aplet is for use by students studying Probability Distributions, and contains formulas that can be used to perform calculations on the
 Binomial, Poisson, Exponential and Normal distributions. You can adapt it to the requirements of your particular course.
Firstly, STiliti the aplet and enter the formulas shown below and on the next page.

E1: \(\quad V=N!/((N-R)!R!)^{*} P^{\wedge} R^{\star}(1-P)^{\wedge}(N-R)\)
E2: \(\quad V=\Sigma\left(J=A, B, N!/((N-J)!J!)^{*} P^{\wedge} J^{*}(1-P)^{\wedge}(N-J)\right)\)
E3: \(\quad P=e^{\wedge}-M^{*} M^{\wedge} K / K\) !
E4: \(\quad P=\Sigma\left(J=A, B, e^{\wedge}-M^{*} M^{\wedge} J / J!\right)\)
E5: \(\quad P=J^{\prime}\left(A, B, K^{\star} X^{\wedge} 3^{\star}(2-X), X\right)\)

E6: \(\quad \mathrm{P}=\mathrm{e}^{\wedge}-\left(\mathrm{K}^{*} \mathrm{~A}\right)-\mathrm{e}^{\wedge}\left(-\mathrm{K}^{*} \mathrm{~B}\right)\)
E7: \(\quad P=U T P N\left(M, S^{2}, X\right)\)
E8: \(\quad P=1-U T P N\left(M, S^{2}, X\right)\)
E9: \(\quad P=U T P N\left(M, S^{2}, A\right)-U T P N\left(M, S^{2}, B\right)\)
E0: \(\quad P=U T P N\left(M, S^{2}, M-K\right)+U T P N\left(M, S^{2}, M+K\right)\)
These formulas can be used in the NUM view to solve problems involving the probability distributions listed earlier.

Equations E1 and E2 can be used for calculations involving individual and cumulative Binomial probabilities.
eg. Find the probability of at most 3 heads when tossing a coin 10 times.
Ensure that formula E2 is FCHETed and enter the values shown right. The value in J is irrelevant as it is merely the summation variable. Highlight V and press 组㽗.

Answer: 0.1719


Note: If your summation involves more than about 25 terms then a normal approximation will be much faster than using this formula. Solve works by repeated iterations converging on the correct value and this will be quite slow if the summation has many terms.

Equations E3 and E4 can be used for calculations involving individual and cumulative Poisson probabilities, where \(M\) is the mean.

The formula in E5 is a generic formula for problems such as the one below:
"A probability distribution has the equation
\(f(x)=0.625 x^{3}(2-x) ; 0 \leq x \leq 2\). Show that this is a valid
probability distribution function and use it to find \(P(x \leq 1.2)\) "

Use it by substituting whatever function is in use for the one currently entered. As this formula involves the integration function, each use of the solve process will require the \(\mathrm{hp} 39 \mathrm{~g}+\) to perform multiple integrations. Because of this the solving process will be relatively slow.

Equation E6 gives \(P(a \leq x \leq b)\) for an exponential distribution.

Equations E7 to E0 concern the Normal distribution, with E7 giving \(P(X \geq x)\), E8 giving \(P(X \leq x)\), E9 giving \(P(a \leq x \leq b)\) and E0 aiding investigation of questions such as "what distance either side of the mean will give a probability of 0.45 ?".

\section*{Notes:}
(i) In equations E1 and E2, \(\mathrm{N}!/((\mathrm{N}-\mathrm{R})!\mathrm{R}\) !) is used rather than the more compact formula COMB(N,R). Doing it this way allows the user to solve for N , whereas the second option does not. Note also that the resulting probability is given as V instead of P because P is already in use in the formula as the probability of an individual success.
(ii) You might choose to split this into two aplets - one for the Discrete probability functions and one for the Continuous ones.

\section*{The Transformer aplet}

This aplet is based on the Parametric aplet and allows students to investigate geometric transformations using \(2 \times 2\) matrices.

In the APLET view, [EETT the Parametric aplet and Sive it under the new name of "Transformer". Enter the equations shown right.


Change to the PLOT SETUP view and enter the settings shown right.


Now change to the Matrix Catalog view and enter the matrices shown below into M1 and M2.
\(M 1=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\)
\[
M 2=\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 1 & 3 & 1
\end{array}\right]
\]

Change to the HOME view and perform the calculation shown right and finally press PLOT.


The result is a triangle with corners at \((1,1)\), \((2,1)\) and \((1,3)\), along with its image after reflection in the x axis.


We can now EDIT matrix M1 so that it contains another matrix. For example:
\[
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
\]

To see the effect of this new matrix, simply return to the HOME view, LIPT the previous calculation and press ENTER. The new image will be stored into matrix M3. If you now return to the PLOT view the image will not appear to have changed as the aplet does not realize the matrix has changed but pressing PLOT again will force a re-draw of the new image.


The power of this aplet as an investigative tool is that you can now continue to EDilT matrix M1, repeat the HOME calculation, and re-plot to see immediately the change in the image.

The degree of guidance which should be given to a class will obviously depend on their level of ability. You might choose simply to suggest that they confine their investigations initially to placing numbers only on the diagonals. It is a good idea to challenge them to record their matrices on the board as they discovered them. A highly able class will find nearly all relevant matrices within 20 to 30 minutes.

So... how does this aplet work?

The formulas in the SYMB view form the key to the process by allowing the calculator to fetch values from the matrices, with the values fetched being determined by the settings in the PLOT SETUP view. For example, as T runs from 1 to 4 in steps of 1 the ( \(\mathrm{X} 1, \mathrm{Y} 1\) ) values plotted become (м2(1,1),M2(2,1)), (м2(1,2),M2(2,2)), (м2 \((1,3), \mathrm{M} 2(2,3)\) ) and (м2 \((1,4), \mathrm{M} 2(2,4)\) ). If we now
 substitute the actual values from matrix M2 then these points become (1,1), \((2,1),(3,1)\) and \((1,1)\), which give the shape when plotted. The repetition of the first point is to ensure that the line forming the triangle is closed by connecting back to its starting point. Obviously X2 and Y2 perform the same function with matrix M3.

To use a different shape you need only change the points in matrix M2. If your new shape has more than three vertices you will need to change the TRange values in the PLOT SETUP view. It is not a good idea to use shapes that are symmetrical, like squares, as it makes it harder to recognize transformations.

\section*{Calculator Tip}

Warning: Due to a bug which existed in the hp 38 g and hp 39 g , this aplet cannot be sent from one hp 39 g to another using the infra-red link. The formulas in the SYMB view often become corrupted during the transfer and need to be re-entered.

This is not a problem for two reasons. Firstly, the transfer would require sending not only the aplet but the matrices too: by the time this is done it would probably have been faster to have the class set it up themselves. Secondly, if the class is not to regard this as 'magic' then they need to understand how the aplet works. This is best accomplished by having them set it up themselves. You might even consider allowing them to first play with drawing shapes of their own invention using a single matrix and only X1 and Y1. This will show clearly why the TRange settings are important, and how the values are extracted from the matrix.

\section*{Copying from hp 39g＋to hp 39g＋via the infra－red link．}

Any aplet can be copied from one hp 39g＋to another via the built in infra－red link at the top of the calculator．Indeed it is not only aplets which can be copied，but lists，notes，sketches，matrices and programs．Of the family of related models，only the hp 40 g does not have this capability．

The key to this ability is the presence of a screen key labeled SEDTl and its companion key FinCI．This is shown in the APLET view on the right．
\begin{tabular}{|c|c|}
\hline APLET LIEFRAFIT & 1：006 \\
\hline Relat．ed Eets & 1，5kE \\
\hline St．atistiにs & G18 \\
\hline Relsヨted こets & ． 14 kB \\
\hline Craphs \(1 / \mathrm{K}\) 人 H & ． 64 KB \\
\hline Fıпıй i пп & ． GBK B \\
\hline  & EECM ETilit \\
\hline
\end{tabular}

These keys can be used to send a copy of the highlighted aplet to any other hp 39g＋．

The infra－red link is located at the top of the calculator，next to the socket which is used to connect the hp \(39 \mathrm{~g}+\) to a computer．This link is exactly like the remote control of a VCR，and allows two calculators to talk to each other． In the interests of security in tests and exams，the distance over which they can talk is limited to about \(8-10 \mathrm{~cm}\) ．

If you look at the keyboard side of the calculator，near the＂hp 39g＋＂label above the screen，you＇ll find a small white triangle．This marks the position of the infra－red port so you can line them up when looking down from above． Put the two calculators top－end to top－end and line up the arrows with the calculators no more than \(9-10 \mathrm{~cm}\) apart．The best separation is about \(3-4 \mathrm{~cm}\) ．

The instructions which follow apply to the transmission of an aplet via the infra－red link but the process is the same for any other view which has GEND and FECD keys．The only difference is with the hp 40 g ，the version available in Europe．For this calculator the link
 is via a supplied calculator to calculator cable and you would choose HP39／40（Wire）instead of the HP39＋（IrDA）specified on the next page．

To send an aplet, both calculators should be showing the APLET view, with the highlight on the aplet you wish to send. Now press the SERDI key on the sending calculator and the FEDN key on the receiving calculator.

On both screens you will see the pop-up list choices shown below. Ensure that the highlight is on HP39+ (IrDA).

The other choices are:
- HP39/40G (Wire)
- Disk drive...


The first of these other two alternatives is there because the hp 39g, the predecessor to the hp \(39 \mathrm{~g}+\), has a 'sister' calculator called the hp 40 g . The hp 40 g was released in Europe and has no infra-red link because the
 European education establishment were generally not happy with the idea of students being able to communicate by infra-red, even to the limited extent that is built into the hp \(39 \mathrm{~g}+\). When you buy an hp 40g in Europe it is supplied with a cable which allows you to use the physical port next to the infra-red window to send aplets from one hp 40 g to another.

The second alternative is there for transmitting aplets to and from a PC or Mac via the Connectivity Kit, or to a special HP disk drive built for the HP38/39/40G family called the "Drive 95". The "Drive 95" was released at the same time as the original hp 38 g but there was no demand for it and it is no longer manufactured. The overwhelming majority of users decided that if they wanted to save an aplet then they would send it to a computer using the Connectivity Kit.

When both calculators are showing the SEWWEED menu and are lined up correctly, press the ENTER key. While the aplet is being transmitted you will see a similar message to the one shown right. When the transmission
 process is complete, the new aplet will appear in the APLET view of the receiving calculator.

If you see a message saying that there has been a "Time-out", it may mean that you did not line the calculators up precisely enough or pressed SEWTO on one without pressing Hecll on the other. The first thing they do is say the electronic equivalent of "Hi there" to
 each other, and if there is no answer from the other machine within about 30 seconds, this is the message you receive.

Calculator Tip
The main cause of failure in communications is low batteries. Low batteries affect communications long before the warning symbol appears.

If your aplet is one that has been created by someone else, rather than simply a copy of one of the standard ones, then it will probably have one or more 'helper' programs associated with it. For example, almost all the aplets available from the Hewlett-Packard web
 site come with sets of up to 6 or 7 programs to do the work, and without which they are totally useless. As an example, the screen shown right contains a number of programs which belong to an aplet called "Coin Tossing" which can be downloaded from the web site The HP HOME view (at http://www.hphomeview.com).

Normally you do not need to worry about this, since the calculator knows they belong with the aplet and will automatically transmit them with it. This can often greatly increase the transmission time. If you want to see these 'helper' programs, press SHIFT PROGRAM to see a list of the programs currently on your calculator. Even if there are no other programs currently stored, you will always see the 'Editline' entry. It contains a record of the last calculation you did in the HOME view and can't be deleted.


Apart from curiosity, there is one important respect in which you need to know about these programs, and that is when it comes time to delete an aplet. The helper programs must be deleted from the Program Catalog after deleting the main aplet in the APLET view by highlighting the aplet and then pressing the DEL key. For more information on this see page 207.

The advantage of having easy access to the Connectivity program is that it allows you to off-load any aplets not being used onto a PC or Mac, which both have essentially unlimited storage in comparison with any calculator.

In addition to aplets, there are many other data structures on the hp 39g+ which can be sent and received to other hp 39g+'s via the infra-red link. These include Lists (via the List Catalog), Matrices (via the Matrix Catalog), independent Notes (via the Notepad Catalog) and Programs (via the Program Catalog). Each of these has a Fill key and, unless the Catalog is empty, a 国四 key. Any notes and sketches which are part of an aplet (via the NOTE \& SKETCH keys) will be transferred with the aplet.

\section*{Downloading aplets from the Internet}

Aplets are available to do many tasks such as exploring graphs, bivariate and time series analysis, as well as many tasks called for in Physics and Chemistry. The number of web sites with aplets is increasing with time.

\section*{Finding aplets}

The Hewlett-Packard site is the best starting point and can be found at http://www.hp.com/calculators. From that point you can follow the links to collections of material for the \(\mathrm{hp} 39 \mathrm{~g}+\) as well as software and utilities. Other sites can be found that have been created by enthusiasts. One of the most extensive is The HP HOME view, found at http://www.hphomeview.com

If you own an hp 39g+ then you already have the required cable with which to download from the internet. If you own one of the earlier models then you need to invest in a Connectivity Kit to get the required cable.

Downloading an aplet from the Web is very simple. Accessing the HP site will present you with a page which may be

similar to the one on the right, although the appearance will probably have changed since this text was written.

Generally you will be able to click on a link for each aplet and see a summary on screen, together with a link that lets you download that aplet as a ZIP file.

A ZIP file is a special type of file which contains one or more compressed files. The reason for the compression is simply to allow you to download them from the Internet more quickly, and you should de-compress them as soon as you have them onto your PC or Mac. There are many programs which will de-compress ZIP files. The most commonly used Windows program is Winzip \({ }^{\oplus}\), which can be found at http://www.winzip.com. The Winzip \({ }^{\circledR}\) program can also usually be found on the disks which accompany many computer magazines.

\section*{Calculator Tip}

It is absolutely critical that you decompress each aplet into a separate directory. Each aplet has two files (HP39DIR. 000 \& HP39DIR.CUR) which always have the same name. Decompressing two zip files containing aplets into the same directory overwrites the first one's files with the second. The aplet itself will not be harmed by this but the effect is to render it invisible to the calculator, since the two special files contain information which is sent to the calculator in order to tell it what the directory contains.

\section*{Organizing your collection}

Shown below and right is the contents of one directory in part of my collection.


If you're only going to download a few aplets then organization will not be as important. If you are a teacher or if you are intending to download lots of aplets then you might consider setting up a logical structure of directories to contain them.

For example, at my school I set up a structure containing directories for each of the courses being run. In each of these directories I then set up further directories containing all the aplets which were relevant to that course. In many cases that involved storing copies of aplets in more than one place since some of them were relevant to more than one course.

Having downloaded our aplet from the web to the computer, we now have the task of transferring it from the computer to the hp 39g+ via the Connectivity Kit. The Connectivity Kit consists of a cable and some software. For hp 39g+ users this is supplied with the cable but not for the earlier model calculators. More recent versions of the software will probably exist though.

\section*{Software for the hp 38g, hp 39g \& hp 40g}

The HP Connectivity Kit, called HPGComm, is discussed in detail on pages 204. It allows users to transfer aplets and all other HP objects such as notes from calculator to PC via the serial port. Its purpose is purely communication: it does not let you edit them in any way.

However there is also a free piece of software called the Aplet Development Kit available over the internet from HP's web site (http://www.hp.com/calculators) or The HP HOME view (at http://www.hphomeview.com) which does allow editing once the object is transferred to the PC. See page 211.


Note that there are two versions of the ADK, one for the hp 38 g and one for the hp 39g, hp 40 g \& hp 39g+. You must make sure that you get the right version for your calculator.

Also, both HPGComm and the ADK will only run on a Windows computer although it may be that Mac and/or Unix versions will become available with time and enthusiasm. Using HPGComm requires that you have a cable and a serial port on your computer. Some newer models of computers do not have a serial port. This was one reason for the release of the hp 39g+, which uses the USB port instead.

\section*{Software for the hp 39g+}

At the time of writing the hp 39g+ had only just been released and new software was in the process of being developed. An image of the current Windows version is shown right but the final version may differ in appearance, perhaps significantly.

The hp \(39 \mathrm{~g}+\) is sold with a cable included, unlike the earlier models. This cable lets it link to the USB port on a PC or a Mac. The intention is that the software being developed should run on any platform, including Unix, and will allow the transfer of objects such as aplets, programs or notes.


Once the aplet or note has been transferred to a PC it can be edited using the same ADK software as is used for the hp 38g, hp 39 g and hp 40 g . The only drawback with this is that the ADK will only run on Windows machines. It may well be that by the time you are reading this there will be new editing software specifically for the hp \(39 \mathrm{~g}+\) and running on other platforms. Check the Hewlett Packard website for information on this. Information can also be found at The HP HOME view (at http://www.hphomeview.com).

Most explanations \& pictures which follow on the next two pages apply to the Windows software. They assume that you are using one of the earlier models (hp 38g, hp 39g or hp 40g) using the serial port for access.

More recent software may well be available by the time you read this.

See Hewlett Packard's web site at http://www.hp.com/calculators

\section*{The HPGComm Connectivity Program}

At this stage I will assume that you have an hp 38 g , hp 39 g or hp 40 g and you have installed the Connectivity software on your computer and have run it. If you have an hp \(39 \mathrm{~g}+\) then the software will be similar in behavior although the appearance of the screens may be different. See page 181.


When you run the software you should see the screen shown above.

If you receive the error message right then it means that the default serial port COM1 is unavailable. Press OK and try changing to a different one from the list on the screen. You should read the comments below first.


Many computers released since 2002 only have USB ports. This was the reason why the hp \(39 \mathrm{~g}+\) was altered so that it uses the USB port. If you own one of the earlier models this means that you will be unable to plug in the cable since it requires a COM port. If this is the case then you will need to buy a USB to Serial adaptor. Unfortunately these often cost more than the cable, but it will solve the problem.

If you are using the software on a school network then you may need to talk to the network administrator. Some school networks lock out ports for security reasons. Discuss your problem with the network administrator.

You can test whether the program is working by performing a screen capture (more on this later). Connect up the cable to the calculator, being firm but careful when plugging it into the top of the calculator so as not to bend the pins. Turn the calculator on and press \(\mathrm{ON}+1\). This means "press and hold down ON and, while still holding it down, press 1 ". If the connection
 is working correctly then a captured image of your calculator screen will appear. If it doesn't then check that you have fresh batteries in the calculator and investigate the use of a different serial port.

The first task is to tell the program where to find the aplet. Press the Change Directory button and use the window that pops up to select the directory which contains the aplet you want to transfer to the calculator. Your program's window won't be the same as mine.

At the top of the window you'll see a message saying

"Please choose a directory" and, once you've chosen a directory you should see "This directory contains hp 39g files" (if there are files there to be downloaded). Press the OK button to select the directory.

Having connected the cable to the calculator, change into the APLET view and press FECD. This time, choose Disk drive... from the menu which pops up. Press ENTER.

If you receive the message shown right, then it is probably caused by low batteries. However, it may be because you have tried to download the hp 38 g version of the aplet instead of the \(\mathrm{hp} 39 \mathrm{~g} / \mathrm{hp} 39 \mathrm{~g}+\) version. It is normally only received if the directory is empty or if one or
 more files are damaged. Tell it \(\mathbf{N l l}\) and investigate.

If all has gone well, you should find that you are looking at another pop-up menu which lists the aplet you are trying to download, together with the word 'Other..' If all you see is the word 'Other..' then it may mean that you haven't decompressed the aplet properly or
 that the download was corrupted, and the aplet is not readable. This is unlikely.

All else being well, if you now highlight the name of the aplet and press [0K, then you will then be entertained to a series of messages as the aplet and all its associated programs transfer down the cable to your
 calculator. If there is insufficient room on your calculator then there will be an error message at some stage telling you this. If this happens you will need to delete the incomplete aplet and however many of its programs successfully downloaded. Given the amount of memory on the hp \(39 \mathrm{~g}+\), this is not likely.

\section*{Using downloaded aplets}

If you press the VIEWS key on your hp 39g+ you will see a list of options which vary according to which aplet is currently active. The VIEWS menu for Function is shown right.

Any aplet that has been created by a programmer, such as the Curve Areas aplet shown right, will generally have had its VIEWS menu modified by the person who created it.


The new VIEWS menu is used to control the aplet, offering a series of choices. Usually the intention is that you should work through the choices in the order that they appear. For example, in the menu shown here you would need to Choose function before you could use
 it to investigate areas under the curve using Lower rect.


Don't forget that these programmed aplets have 'helper' programs that are automatically loaded into the Program Catalog. When you delete the aplet these are not automatically deleted. You must change into the Program Catalog and delete them by
 hand. Left undeleted they will simply consume memory. See next page.

If you are a teacher using an hp 39g+ then it is highly recommend that you investigate teaching aplets. They can enhance your teaching greatly and, more importantly, put the learning process in the hands of the student where it belongs, by letting them control the
 process via their calculator. It is worth reading the information contained in Appendix A: Teaching Calculus with an hp 39g+ on page 301.

\section*{Deleting downloaded aplets from the calculator}

As was mentioned earlier, most of the aplets you download will have 'helper' programs
 associated with them. These are stored in the Program Catalog. Apart from curiosity, there is one important respect in which you need to know about these programs and how to locate them, and that is when it comes time to delete an aplet. As you would expect, this is initially done in the APLET view by highlighting the aplet and then pressing DEL.

If the aplet is a simple copy of one of the standard ten, then that is the end of the process. However if the aplet has a set of one or more programs associated with it then those programs will not be deleted and will still be taking up memory. To delete these left over programs you will need to switch to the Program Catalog and remove them. Even on an hp 39g+ it is advisable to do this or your memory will gradually be used up.

As an example of this, look at the aplet called "Coin Tossing" shown in the APLET view right. Looking at the list of programs shown in the Program Catalog view, you will see a set of programs which all begin with the letters .COIN. The convention encouraged by Hewlett-Packard is to name the programs so that it is fairly obvious which ones belong to which aplet, hence the .COIN code for an aplet called "Coin Tossing".

Simply position the highlight on each of the programs in turn and press the DEL key. If your calculator only contains one aplet with programs linked, then it is faster to use SHIFT CLEAR to delete all programs at once.
\begin{tabular}{|c|c|}
\hline APLET LIERAFIT & , \\
\hline Coin Toseina & , EkE \\
\hline Related sets & 1.5KE \\
\hline Statistics & QRE \\
\hline Relagted sets & . 14kE \\
\hline Graphs \(1 / 8 \times \mathrm{N}\) & B \\
\hline \multicolumn{2}{|l|}{} \\
\hline Pragralk Cith & 19\% \\
\hline H. SU & . \(17 \times\) \\
\hline COIH. 5 & \(75 k \mathrm{E}\) \\
\hline OIN. SH & . 38kB \\
\hline OIN. TS & . 6 \\
\hline DIN, CD & 1eke \\
\hline EDIT | WEP | |SENI & GECW| \\
\hline
\end{tabular}


The Program Catalog view has no \$D\$T key. If you store a large number of aplets then you may find that you start to have trouble telling what program belongs and what should be deleted. For the average user this probably will not be a problem. The naming convention should ensure that you are able to work out which is which. If you know the first letter of the name of the program then pressing that letter on the keyboard will take you to it.

\section*{Saving notes, aplets and sketches via the Connectivity Kit}

The following information applies to the HPGComm program for the hp 38g, hp 39 g or hp 40 g . If you have an \(\mathrm{hp} 39 \mathrm{~g}+\) then the software will be similar in behavior although the appearance may be significantly different (page 203).

Sending aplets, programs, notes etc back to a computer is simply the reverse of the process covered so far. The only difference is that you need to create a directory to hold them first. The Connectivity Kit software is capable of doing this for you. Just browse to the directory
 in which you want to create your new folder and click on 'Ok'. Now add to the path in the directory box by typing at the end of it. When you do this the middle icon (left) will activate. Clicking on it will create the new directory.

In the example shown right, I have created a directory called 'MyFunction' to hold a copy of the Function aplet, which I have also called MyFunction, although it's certainly not important that they have the same name.

I now need to change into the view which shows the object I am trying to save and highlight it. In
 this case that's the APLET view. Most of the storage views have EERD and FECM keys, which means that you can also save programs, lists, matrices, and notes. Sketches can only be saved by saving the aplet to which they belong.

Press the EEWD key, choose the Disk drive... option from the menu and press ENTER.

The calculator will respond by asking if you want to Send now. Again, press ENTER. Don't use the Pick location... option.


If the directory is currently empty, then the calculator will display the image shown right.


\section*{Calculator Tip}

The meaning of the question about "Initialize directory?" is that the calculator has tried to find the two special files HP39DIR. 000 and HP39DIR.CUR which tell it what files are in the directory and has, of course, been unable to retrieve them since it is an empty directory. It is asking if it can go ahead and create them itself.

The program will respond with message shown right. As it says, you should press the UEE key on the calculator to continue the process.


You will then see a series of messages on the computer and on the calculator telling you that files are being transmitted. At the end of the process your aplet (or program, note etc...) will have been saved.


You can re-use this directory later to save any other objects from the calculator. Next time you use it you will not see the message asking if you want to "Initialize directory?", as the two special files are now present. They will be automatically updated each time you save to the directory.

\section*{Calculator Tip}

DO NOT edit, rename, or otherwise interfere with these files once they are on the computer. If you do then you risk corrupting them so that the calculator can't read them. If you want to edit a note or aplet on the computer then use the right software.

\section*{Capturing screens using the Connectivity Kit}

One of the most powerful abilities of the Connectivity Kit is its ability to capture images of the calculator screen. These images can be pasted into a document or into a Paint program for further processing. This allows teachers to create worksheets that include images of what the student should see. Students can create reports that include graphs and tables from your calculator.


Any screen can be captured at any moment, even if it is only partially drawn. The capture is triggered by pressing \(\mathrm{ON}+1\). This means holding down the ON key and, while still holding it down, pressing and releasing the 1 key then ON. When you do the image appears on the computer. The images to the right and above show the screen capture process on the two different pieces
 of software. See page 203.

Once the image is captured, the Options menu on the HPGComm software package allows you to perform simple tasks such as putting a border around the image, and rotating or resizing the image. The File menu will allow you to save the image as a BMP file.

The software for the hp 39g+ also has options to allow you to copy the image to the clipboard, or to save it as a BMP file.

The Edit menu on HPGComm has a single option of Copy to clipboard which allows you to transfer the
 image into any other software capable of receiving it. Windows Paint is suitable. Most word processors will also accept images pasted directly from the clipboard.

A variation of this capture process is useful if you want to retain the image on your calculator. Pressing ON+PLOT stores the image into graphics object G0. This can then be pasted into a sketch using the VARS menu. From the sketch view, press VARS and then

 the 패절 key. Scroll down to the Graphics variables and select G0. Now press WiLII and then ENTER. The image will be pasted into your sketch and you can then use the drawing tools to edit it. Using a Paint program is easier and quicker.

\section*{Editing Notes with the Aplet Development Kit}

Free software is available to let you edit Notes and aplets on a Windows computer from any of the hp 38g, hp 39g, hp 40 g or hp \(39 \mathrm{~g}+\). This software is called the Aplet Development Kit (ADK) and it is also used to create and program aplets. Here we will look only at using it to edit Notes. Similar software will probably become available for the Macintosh computers but was not available at the time of writing.

Since the aplets are the same for the \(\mathrm{hp} 39 \mathrm{~g}, \mathrm{hp} 40 \mathrm{~g}\) and \(\mathrm{hp} 39 \mathrm{~g}+\) the can all be edited by the ADK. The only difference for the hp \(39 \mathrm{~g}+\) is that the software used to get it onto the computer is different. See page 203.

If you have downloaded, installed and run the ADK software you should see the screen shown right.

Using either the File menu or the button, open the directory window and work your way into the directory in which you have
 stored your Note file. Highlight it and click on the Open button.

You can now type your text into the Note using the normal computer keyboard. The special characters that are normally available from the CHARS view are also available via the \(\#\) button.

When you've finished editing you can use the Connectivity Software to transfer the result back to the calculator.

\section*{PRogramming the hp 39G+}

\section*{The design process}

\section*{An overview}

Although you can choose to simply create programs which are self sufficient the whole point of working on the hp \(39 \mathrm{~g}+\) is to use aplets. Hence this chapter will concentrate on the process of creating aplets with enhanced powers provided by attached 'helper' programs.

The key to the entire process of creating completely new aplets is the VIEWS menu and its controlling command function SETVIEWS. This function allows you to override the normal behavior of an aplet and superimpose new properties by linking in a set of programs written by you.

It is mildly deceptive to call these aplets "new", as they derive from one of the standard ones, but the modification of the VIEWS menu means that their final appearance and behavior can be very different to the aplet they derive from.

Essentially the process involves the following stages...
- Choose the parent aplet;
- Analyze the expected behavior and design the VIEWS menu;
- Write the 'helper' programs and attach them to the aplet using the SETVIEWS function;
- Add supporting documentation.

\section*{Choosing the parent aplet}

The first stage in the creation process is to decide which of the standard aplets you wish to make the "parent" of your new child aplet. For some aplets this may not matter, but for others this can be a very important choice. All the abilities of the parent are inherited by the child so the parent choice is crucial if your aplet requires particular abilities. The most commonly used parent aplets are the Function and Statistics aplets, whereas the Quadratic and Trig Explorers would probably not make good parent aplets, since they are specialized teaching aplets without the flexibility of the others.

If your new aplet is going to be concerned with analyzing data then your best choice for a parent would probably be the Statistics aplet. On the other hand if you were planning to write an aplet to teach the behavior of graphs then the Function or Parametric aplets would obviously be best. All the tools of the parent are available to the child, so consider carefully what tools you require.


\section*{Naming conventions}

The process starts by making a copy of the parent aplet and giving it whatever name you want to use for your new aplet. This copy will form the core of your new aplet. Decide also what prefix to use for the programs you will associate with your new aplet. The prefix needs to be recognizably linked to the name of the aplet, so that the user can know which programs to delete when they want to clear the programs out after deleting the aplet from the APLET view after use.

For example, an aplet called "Linear Equations" might have a list of programs:
```

.LINEQ.SV .LINEQ.S
.LINEQ.EN .LINEQ.DIS

```

The next stage is to plan your VIEWS menu. The VIEWS menu is the controller of your aplet. It pops up when the user presses the VIEWS key or at a programming command, and offers a choice of options to the user. Most of the options in your VIEWS menu will be triggers for 'helper' programs you will write, and when the user chooses an option and presses ENTER, the appropriate 'helper' program will be run by the hp \(39 \mathrm{~g}+\). When the 'helper' program terminates the calculator drops into whatever view you as the designer choose. For example, a 'helper' program might set up axes based on the data entered and then drop the user into the PLOT view.

\section*{Planning the VIEWS menu}

It is very important to the usefulness of your aplet that you carefully plan the VIEWS menu to be clear, concise and user-friendly. It is possible to have sub-menus in the VIEWS menu by having your option call a program which then pops up another menu of options. This is usually denoted by an placing an ellipsis (...) following the VIEWS option, such as the one below.

An example of the VIEWS menu from an aplet is shown right. The aplet is called "Time Series" and is designed to analyze time series data.


The parent aplet for "Time Series" was the Statistics aplet. This parent was chosen because of the need for the statistical tools it contains. For this particular aplet most of the choices on the VIEWS menu trigger a 'helper' program to analyze the data in some way and then drop the user back into the NUM view showing the result. Some of the choices drop back into the PLOT view to see the data displayed.

Sometimes choices trigger further menus. For example the last option of 'Graphs...' runs a program which pops up another menu, shown right. The reason for this method is generally simply to avoid overcrowding the main menu.


Another example of an aplet is shown right. It is called "Tangent Lines" and it draws a tangent line onto a graph and then lets you move it around, displaying the gradient as it does so. This aplet has the Function aplet as its parent and displays the VIEWS menu
 shown right. In this case the menu has far fewer options.

The SETVIEWS programming command which creates the VIEWS menu follows a repetitive pattern of listing a menu option, followed by the name of the program the calculator should run if the user chooses that option, followed by a code number which tells the calculator in which view to leave the user once the program finishes.

You should therefore also think about what you want the user to be looking at once the program they have triggered stops running. Do you want them to be looking at the PLOT view - perhaps the option they chose was to draw a graph, with the program being there to set appropriate axes; or the NUM view - perhaps we are analysing data - or should they be looking at the VIEWS menu again so that they can immediately make another choice?

The syntax for SETVIEWS is as follows...
SETVIEWS "Menu line1"; "Program name"; View_No;
"Menu line2"; "Program name"; View_No;
"Menu line3"; "Program name"; View_No: (colon on final entry)
where View_No is:
0. Home view 11. List Catalog
1. Plot view
2. Symbolic view
12. Matrix Catalog
3. Numeric view
13. Notepad Catalog
3. Numeric view 14. Program Catalog
4. Plot Setup
15. Views menu item 1 (Plot-Detail in Func.)
5. Symbolic Setup
16. Views menu item 2 (Plot-Table in Func.)
6. Numeric Setup 17. Views menu item 3 (Overlay Plot in Func.)
7. Views menu 18. Views menu item 4 (Auto Scale in Func.)
8. Aplet Note view 19. Views menu item 5 (Decimal in Func.)
9. Aplet Sketch view 20. Views menu item 6 (Integer in Func.)
10. Aplet Catalog 21. Views menu item 7 (Trig in Func.) etc.

The syntax for SETVIEWS allows any number of these triples.

The convention for the SETVIEWS command is to place it in a program with a name of . NAME. SV where NAME is whatever name you chose at design stage. When you run this program it severs the aplet's link to the normal VIEWS menu inherited from its parent and replaces it with the new options.

If an aplet is created using the ADK then it may not have this . NAME. SV program. The ADK creates the VIEWS menu in a different way that doesn't require it.

The linking process performed by the SETVIEWS command (or by the ADK) is also important in that it tells the calculator which programs are to be transmitted with the aplet when it is copied via cable or infra-red link. Only those programs named in the SETVIEWS command (or linked by the ADK) will be transmitted.

In addition to the lines which form the menu for your aplet, there are some special entries which are treated differently.
i. If you include entries called "Start" or "Reset", then the 'helper' programs associated with those entries will be run when the user

ii. If you include a menu line entry which consists of a single space character in double quotes, then the entry will not appear in the VIEWS menu, but the program named in the line will be transmitted with the aplet. This can be handy if you have a program which is a subroutine. ie one which is not directly called in the menu but which is called by another program which is in the menu.
Another example of this is the . NAME.SV program itself. It needs to be included in the list in this fashion, since we don't want it to appear on the VIEWS menu but it is usually kept and transmitted with the aplet. Strictly this is not necessary since, once it has done its job, it would normally never need to be run again.
iii. If you include an entry which consists of empty double quotes, then you can access the commands which appear on the parent aplet's normal VIEWS menu which has been replaced by yours. The standard menu options of Auto Scale, Plot-Detail etc. can be included in this way. View numbers 15 onwards are reserved for this purpose. For example, if your parent aplet was the Statistics aplet in ETFIFI mode and you wanted to include its Auto Scale command then you would use a view number of 18 since Auto Scale is entry number 4 on the normal VIEWS menu for the Statistics aplet in EIFIFI mode. You need to be quite careful when using this option since the commands like Auto Scale appear in different positions for different parents.

Shown below is a SETVIEWS program which illustrates this...

producing a menu of...


It is a very good idea to include a "Start" entry, since it will be automatically run when the user presses ETHFIT and it thus allows you to enter pre-set values in variables, or to pre-set axes, so that the aplet runs smoothly. Additionally, if you terminate the "Start" entry with a view number of 7 then as soon as the user runs the aplet the VIEWS menu will be displayed (it is view number 7). This makes the aplet more friendly since the controlling menu is the first thing the user sees. Some aplets tend to opt for first displaying the Note view because they include instructions there. I usually opt for the VIEWS menu and include instructions in a separate file.

\section*{Example aplet \#1}

This example will use the SETVIEWS command to design a very simple (and totally useless) aplet, which will illustrate a few of the concepts useful in programming the hp 39g+. We'll call it the 'Message' aplet and create it as a descendant of the Function aplet.

Change into the APLET view, move the highlight to the Function aplet and E 玉ET it. Now save it under the new name of 'Message' and then STCIFT this new aplet.

You will find that you are looking at the normal SYMB view but for the Message aplet instead of the Function aplet.

Press SHIFT PROGRAM to view the Program Catalog. Press Nㅐㅌㅔ to create a new program and call it .MSG.SV (see right, with part of the new program typed in)

Into this empty program, type the following code, obtaining the quotes from the CHARS view. When you finish typing, just press SHIFT PROGRAM again to exit back to the Program Catalog. There is no need to save as this is done continuously as you type.


Spend a moment to go through the code and ensure that you are clear in your own mind the menu it will create, the programs it will run, and the views it will enter after the running of each program. You will be told at a later stage in this example when to run this program and create the menu.

We'll now create the associated 'helper' programs (shown below). Their names/titles are supplied above the code for each one.
\begin{tabular}{|c|c|c|}
\hline .MSG. 1 & .MSG.IN & .MSG. 2 \\
\hline  &  &  \\
\hline ERASE clears the screen, ready to DISP a message on lines 4 and 5 of the screen. The calculator then FREEZEs waiting for a key to be pressed. & The MSGBOX command is used to display the traditional first message for programmers learning a new language! & The INPUT command asks the user for info, displaying a title, prompt and tip and having a default value of 20 . \\
\hline .MSG.FN & .MSG.S & \\
\hline  & The command \(\rightarrow\) GROB in the program left, stands for "Graphic Object" and creates a GROB from the \(\mathrm{F} 1(\mathrm{X})\) expression stored in the SYMB view, storing it in the graphic memory G1, using the font specified ( \(0,1,2\) or 3 ). The reason for doing it this way is to use proper mathematical layout like SHOW does. The \(\rightarrow\) DISPLAY command then shows it on screen. & \begin{tabular}{l}
 \\
The SETVIEWS command is discussed in detail on the previous pages.
\end{tabular} \\
\hline
\end{tabular}

Having created all of the programs that make up the aplet 'Message', we can now run the program .MSG. SV, severing the aplet's link to its current VIEWS menu which was inherited from its parent the Function aplet, and substituting this new menu. Before you do this, check that you are still in the correct aplet. Press the SYMB key and check that the title at the top still says "message symbolic view". If it doesn't show this, then EThitit the aplet again to ensure that it is the active one and so the one whose VIEWS menu will be changed.

Swap back to the Program Cata1og, position the highlight on the program .MSG. SV and Fill the program. Apart from the screen going blank for a moment nothing will appear to happen, but in fact the link to the normal VIEWS menu which 'Message' inherited from its parent aplet Function has been severed and a link to the new menu you built in .MSG. SV has been substituted. Press VIEWS to check.

Providing that you have done everything correctly, this is now the end of the process - the aplet is now ready to be run. In the APLET view, make sure the highlight is still on the aplet and press ETiliti or ENTER to run it. If you get an error message at any time then you may have to Gild and EDIT the program.

When you do this, the aplet will run the program .MSG.S which will display a MSGBOX.

The line in the SETVIEWS command
 controlling this was:
"Start";".MSG.S";7;

Since the triple ends with a view number of 7 , this means that after the program terminates (when you press DK ), the VIEWS menu will display again.


Chin
If you choose the option 'Message 1 ', then this will cause the program .MSG. 1 to be run, displaying the screen on the right. This line in the SETVIEWS command also terminated with a view number of 7 so when you press OK the VIEWS menu will display again.


The program line for this was:
\[
\text { MSGBOX "Hello world! } 3+4=\text { " } 3+4:
\]

Items in quotes are displayed as they appear, while expressions outside them are evaluated before being displayed. Expressions can include variables and calls to functions.

The next option in the menu is 'Input value'. Choosing this option will create an input screen. The statement controlling this was:


INPUT N;"MY TITLE";"Please enter N..";"Do as you're told.";20:

Examine the snapshot on the right and notice the connection between the various parts of the INPUT statement and their effect. Note the suggested value of 20 , and note also that the prompt of "Please enter N.." was too long to be
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|l|}{PLEASE E... [G]} \\
\hline do is yourie told & \\
\hline E[JIT & Crincl \\
\hline
\end{tabular} displayed. See the PROMPT command for an alternative that is simpler but less flexible.

When you enter a number into the input screen and press ENTER, the next line in .MSG. IN will display this value in a MSGBOX. When you then press IK, the view number of 7 specified in the relevant line of .MSG. SV will cause the VIEWS menu to be displayed again.

Notice that the input window is still displaying in the background. To stop this happening, you could have included in .MSG. IN a line of ERASE: , which is a command to erase the display screen. Try editing the program, inserting this line before the MSGBOX line, and running it again.

The option of 'Message 2' displays the same message as we saw before, but presented in a different way. The DISP command divides the display screen up into 7 lines \((1-7)\) on which you can display data.


For example, suppose memory A contained 3.56, then the command:
DISP 3;"The value of A is: "A:
would display the message The value of \(A\) is: 3.56 on line 3 of the display screen.

Notice also that this time when you press ENTER, you end up in the HOME view rather than in the VIEWS menu again. This is not an error. If you look at the line in .MSG. SV controlling this option of the menu you will see that its post execution view number was 0 (HOME) rather than 7 (VIEWS menu) like most of the others. To see the VIEWS menu again, press VIEWS.

The final option is 'Show function'. The program this runs is a little more complex than the ones shown so far and illustrates a useful technique.

The line: \(\quad((X+2) \wedge 3+4) /(X-2)^{\prime} \quad F 1(X)\) :
stores the expression \(\frac{(x+2)^{3}+4}{(x-2)}\) into the function \(\mathrm{F} 1(\mathrm{X})\).

Notice the way the function is in single quotes so that the algebraic expression itself is used rather than its value when evaluated using the current contents of memory \(X\). If you wanted to graph this function by setting the post execution view number to 1 (the PLOT view), then you would need to include the command CHECK 1: in order to FCHE it or it would not graph. You may wish to edit the .MSG. SV and.MSG. FN program to try this.

The next lines display the expression using the four options available.


The line: \(\rightarrow\) GROB G1; F1 (QUOTE (X)); 0 :
converts the expression \(F 1(X)\) into a Graphic Object (GROB). The number at the end, which changes with each repetition, controls the font used to display the function.

The line: \(\rightarrow\) DISPLAY G1: displays this GROB on the screen, and the FREEZE command freezes the display until a key is pressed.

Finally the LINE and BOX commands commands are used to draw an oblique line across the screen and a box near the center. Notice the use of Xmin , Xmax, Ymin and Ymax in the LINE command. This means that the line would appear the same even if the screen were to be re-sized in the PLOT SETUP view. The FREEZE command is needed to ensure that your screen is visible to the user and not immediately replaced by the next view.

Note that SETVIEWS has a "Start" option and also a final option consisting of a single space in quotes which is simply to link in the . MSG. SV program so that it is transmitted with the aplet. It does not appear on the menu.

\section*{Example aplet \#2}

If you haven't already, read pages 194 which explain how to create a copy of the Parametric aplet to explore geometric transformations using matrices. We will now look at using programming to enhance this aplet by automating the process.

Start by highlighting the Parametric aplet and
 the new name 'Transformer'. Press SHIFT NOTE (not NOTEPAD) and enter some explanatory text into the aplet's Note view. You can use the text shown right.


The next step is to create the 'helper' programs for the aplet, including the one containing the SETVIEWS command used to create a new VIEWS menu for the aplet. These programs are shown on the next page. When you have typed them all in then सllil the program .TRANSF.SV to create the VIEWS menu.

Programs for the aplet 'Transformer' are given below.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{.TRANSF.SV } & \multicolumn{1}{c|}{. TRANSF.S } & . TRANSF. PLOT \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline .TRANSF.SHAPE & & \\
\hline
\end{tabular}

Assuming that you have Fild the .TRANSF. SV program to create the new altered VIEWS menu then you can now test the aplet. Its operation should be familiar to you if you have already examined its 'cousin' on page 194.

In the next example we will use the Aplet Development Kit (ADK) to re-create the same 'Transformer' aplet used in example 2. This will allow us to concentrate on how to use the ADK rather than the aplet. The ADK runs only on Windows computers and was originally written for Windows 3.1. Because of this it does not understand long filenames or the Desktop and this makes it difficult to use at times. It may be that when you read this text new software will have been released by HP to supercede the ADK. The behavior of any successor is likely to be quite similar to that shown below since the basic design process is fixed by the calculator.

There are two versions of the ADK - one for the hp 38 g and one for the hp 39g, hp 40 g and \(\mathrm{hp} 39 \mathrm{~g}+\). Aplets created by one version are not compatible with the other version's calculators. Look for the ADK on The HP HOME view (at http://www.hphomeview.com).

\section*{Example aplet \#3}

Run the Aplet Development Kit and use the File - New command to see the box shown right. Enter 'Transformer' and nominate the parent aplet to be the Parametric aplet in the box provided.
 will be created and its Note view will be displayed. Enter the text below as a hint to the user on how to use the aplet in case they don't have the documentation.
"This aplet will let you investigate geometric transformations using a \(2 \times 2\) matrix. Press VIEWS to see the menu."

The next stage is to create the VIEWS menu. From the View menu, select Special views... and you will see the VIEWS menu creation screen. Press the Insert button five times to create the five entries we require for our menu. You can also create them one by one as required.


Click on＂View 1＂in the View List window．Change the prompt to ＂Change matrix＂，the Object name to ＂．TRANSF．MAT＂and the Next View to＂7：Views＂．

In the main window，enter the code for this program（see Example 2）． Special characters such as can be

obtained from the \(\#\) button．

We now must save the code．Click on the＂View 2＂entry in the View List window and the ADK will ask if you wish to save the code you entered for the first view．Tell it＇Yes＇and a save dialog box will appear．At this point I usually realize I have forgotten to create a directory to hold my aplet and you may have too．If so，click on＇Cancel＇，and create an empty folder to hold the aplet．Remember that the ADK is a very old program and does not recognize long filenames．It only accepts names with up to eight characters and no spaces．This applies to directories also，so if you use＇Transformer＇for your directory then you may find it appears in the ADK＇s directory view as TRANSF～1，which is the Windows＇short＇version．

Save the program under any name．I used EDITMAT．PRG．Make sure you are in the directory you created before you click on＇Save＇．

If you click again on the first view in the View List window you will find that it now records the filename you used．


At this point you should also save the aplet itself，perhaps as TRANSFRM．APT．

Using similar methods，enter the code for the other programs，with two exceptions．Firstly， the Change Axes option has no program attached and you should leave the Object

ChEの日に met．rix Flot transf．

 St．art． Name blank for that entry，simply specifying the Next View entry to be the PLOT SETUP view．Secondly，the program we used before to contain the SETVIEWS command is not required for aplets created by the ADK．When you finish，close the views planner and use the File menu to save the aplet also．

The final stage is to use the ADK to create the two special files HP39DIR.CUR and HP39DIR. 000 .

In the File menu, choose Aplet Library. You will see a list of the programs and the
 aplet in the window labeled "Other files".

Click on each file in the right hand bottom window in turn to highlight it and then on the "Add <=" button to add it to the library files. You can only add files which are legitimate calculator files. I usually add the aplet file first and then each of the programs in the order that they appear on the VIEWS menu, but this has absolutely no effect on the running of the aplet.

When you finish, click on the "Done" button and the files HP38DIR.CUR and HP38DIR. 000 will be created. Exit from the ADK and the aplet is finished and ready to be transferred.

\section*{Example aplet \#4}

The final example is a very useful aplet called "Linr Explorer". The name would be better as "Linear Explorer" but names of more than 14 characters will not display properly in the APLET view. This will be somewhat similar to the Quad and Trig Explorer aplets, except that it will explore linear equations. Its parent is the Function aplet.

Create a directory to hold the aplet and then run the ADK. Use the File - New command to create an aplet called "Linr Explorer" with a parent of the Function aplet.


In the Note view, enter the text shown right.

Our VIEWS menu will only have three entries, so use the View - Custom views... command to display the menu planner and press 'Insert' three times. Our VIEWS menu will be as shown below.


The first entry should have a Prompt of 'Plot axes', an Object Name of '.LINEXPL.AX' and a Next View of 1 (Plot view). The full code for each of the programs is given on the next page, and other settings are shown below and right.


Save the aplet and use the File - Aplet library facility to create the two special files for the directory which allow the calculator to download it. Finally, download it to the calculator and test it.


Choose the first option on the VIEWS menu to plot the axes and then the 'Explore' option to explore the equation of a line. On the pages following we will examine the code in detail, as it illustrates many highly important techniques.


Since it is the first program run we will look first at the program .LINEXPL.S.


The variable G is being used here as a flag. Before the 'Explore' option can be used we must be sure that the axes have been plotted, and this will be done by checking the value of G . Zero will mean 'unready' and one will mean 'ready'. When the 'Plot axes' option is run the value of G will be set to 1 and this will be checked before allowing the user to run the 'Explore' option. By setting it to zero in the program which is run when the user presses ETilit, we ensure that the correct value is going to be in G initially. If this check is not done then the code used in .LINEXPL.EX will cause the program to crash, which is obviously not something we want. The axes are also set back to the default settings in case the user has changed them.

The \(2^{\text {nd }}\) and \(3^{\text {rd }}\) lines are there to insert a function．We need a function when the axes are plotted or the normal error message will be displayed（see right），which is undesirable as it confuses the user．On the other hand we need blank axes，so we use a function
 ＇Ymax＋1＇which is guaranteed to be off－screen for the entire x axis range no matter what axes are used．Clever，eh？

The next program code we will look at belongs to the \(1^{\text {st }}\) option on the VIEWS menu of＇Plot axes＇．


A message is first given to the user of how to proceed if they want to use different axes．The flag value of G is then set to 1 so that the next program can tell that the axes are ready to use．The function is also re－entered in case the user has changed the SYMB view．Users have a habit of changing things so try to allow for this in your programs．

The next program below illustrates a very important technique where a copy of the PLOT view is stored in the aplet＇s sketch view and then retrieved and modified using the various graphics commands．The program is broken into parts for discussion purposes．


The reason for the＂IF G＝＝0 THEN＂is to check that the blank axes have been plotted and are available for use．If not then the user receives a message to tell them what to do and the remainder of the program is bypassed．Trying to capture a PLOT view that doesn＇t exist is a major error．

Still referring to the code on the previous page, you will see that it refers to PageNum. The sketches in the hp 39g+'s SKETCH view are numbered 1, 2, 3...etc. Sketch number 1 is always present but after that only sketches that have been created are available and the program will crash if you try to access one that does not exist. The aplet variable PageNum is the pointer to the sketch you want and the actual sketch is called Page. Thus the two lines after ELSE tell the program to store the PLOT view into the first page of the SKETCH view. The PLOT view must exist before this can be done or the program will crash. If you run the program and then later change to the SKETCH view you will be able to see this stored image. Finally, the user is presented with two messages which tell them what to do.

The next section begins the code which performs the work in the aplet.


The first line assigns initial values to the variables \(M\) (gradient) and \(C\) ( \(y\) intercept). The DO...UNTIL loop which follows (partly in the next section of code) loops through the code within it until the ENTER key is pressed.

Within the loop, the previously stored SKETCH view is transferred from storage to the display using the \(\rightarrow\) DISPLAY command. The equation of the current line is then displayed in the top left corner using the DISPXY command. Two versions are needed to avoid an expression like " \(y=2 x+-1\) ".

The DISPXY command was a late addition to the calculator and was added at my request (many thanks, Jean-Yves and Cyrille!). It is a hugely useful command to programmers but because it was added at the last minute it does not appear in the manual for the hp 39g. It may have been added to the \(\mathrm{hp} 39 \mathrm{~g}+\) 's manual. It does appear in the Prompt section of the MATH menu.

The DISPXY command allows you to place a string of text at any position on the screen using two different fonts. Until this command was added to the language the only way to do this was to:
- save the current screen into a graphics variable.
- create a special GROB which contained the text.
- superimpose the GROB onto the stored image.
- redisplay the modified image onto the screen.

Quite apart from the fact that this was incredibly involved, it was very slow and the command to create the GROB was very limited in what it would allow.

The new command has the syntax:
DISPXY <x-pos>;<y-pos>;<font\#>;<object>:
 will display the text " \(y=2 x+3\) " using font \#1 (small) at the top (Ymax) left (Xmin) of the screen.

The next line places a label on the \(y\) axis (offset slightly) to mark the \(y\) intercept. A check is then done to see if an x-intercept exists and, if it does, a label is placed to mark it. Any labels off the edge of the screen will be ignored.

Finally the line itself is drawn. Even though part of the line extends off the screen there is no problem - the excess is clipped.

The next section of code below waits until the user presses a key (GETKEY) and stores the key's code into the variable K.


A CASE statement is then used to check for the use of the arrow keys. Notice the lack of colons (:) after each END in the CASE statement.

If the left or right arrows have been pressed (keys 34.1 or 36.1) then the line is 'twisted' by changing the value of M . If the up or down arrows have been pressed (keys 25.1 or 35.1 ) then the line is raised or lowered by changing the value of \(C\). See the manual for more information on the GETKEY and CASE commands and on key values.

The final check in the line UNTIL \(K==105.1\) END: is to see if the user has pressed the ENTER key. If so then the loop will terminate and the screen will erase. If not then the loop begins again with the new line being displayed. On termination of the program the VIEWS menu will display again, because we chose this when designing the aplet in the ADK.

This aplet illustrates most of the commonly used programming techniques. If you would like to gain experience then I suggest that you do as I did download aplets and pull them apart to see how they work.

If you would like to further enhance this aplet then try the following:
- change the order of the code so that the labels are drawn after the line, thus ensuring that the text is never obscured by the line.
- add a new variable \(D\) to allow the size of the increment to change. Set an initial value of \(D\) of 0.5 at the same point as the values of \(M\) and \(C\). Then change the lines above so that \(D\) is added/subtracted instead of 0.5 . Add two more IFs to the CASE statement so that if they press ' + ' the increment doubles, and if '-' then it halves. You will also need to add another message box line telling them about this. Finally, add a line to display the current increment size at the top right of the screen using the DISPXY command.

The explanation so far should help you in understanding the programming process on the \(\mathrm{hp} 39 \mathrm{~g}+\). The aplet structure is well designed and, if you take advantage of the VIEWS menu structure, offers easy creation of complex and very powerful teaching aplets. Certainly what has been discussed here is enough that a programmer will be able to make a start without some of the errors that I made.

\section*{Programming Commands}

All programming commands can by typed in by hand but, as with the MATH commands, can also be obtained from a menu. Press SHIFT CMDS to display this.


In this section I will only be covering those commands which I have used regularly and so regard as important. These may not be the same as the ones you regard as important. If so, consult the manual.

\section*{The Aplet commands}

These control aspects of the aplet.

\section*{CHECK n, UNCHECK n}

These commands put or remove a check next to the equation whose number is given by \(n\). An interesting bug is actually quite useful: if you UNCHECK 0 then all equations are unchecked instead of only equation 0. Unfortunately the same is not true for the
 CHECK command. As they say in the trade: "It's not a bug, it's a feature!".

\section*{SELECT <name>}

This is used to set the active aplet if necessary. If the name has spaces in it then it must be enclosed in quotes. This is not usually required as the program will normally be called by the active aplet anyway. I have only used it with 'stand-alone' programs not attached to an
 aplet so that they can temporarily 'borrow' abilities belonging to an aplet. However, it could also be used to create an aplet that had two 'parents' if you required it to inherit abilities from both. You could then swap from one parent to the other using this command. This could be quite cumbersome but might add some powerful features.

\section*{SETVIEWS <prompt>;<program>;<view number>}

This absolutely critical command is covered in great detail on page 214.

\section*{The Branch commands}

\section*{IF <test> THEN <true clause> [ELSE <false clause>] END}

Note the need for a double = sign when comparing equalities. Any number of statements can be placed in the true and false sections. Enclosing brackets are not required.


\section*{CASE <if clauses> ...END:}

This command removes the need for nested IF commands but is only worth it if you have more than two or three nested IFs. Note that colons are not required for the ENDs which terminate the internal IF clauses.


\section*{IFFERR <statements> THEN <statements> [ELSE <statements>] END}

This can be used to error trap programs where there is a possibility of something going wrong which would normally crash the program, such as evaluating a function at a point for which it is undefined. By trapping the suspect code you can supply an alternative which will
 perform some other action. This will tend to make your programs more user friendly and is a very good idea!

\section*{RUN <program name>}

This command runs the program named, with execution resuming in the calling program afterwards. If a particular piece of code is used repeatedly then this can be used to reduce memory use by placing the code in a separate program and calling it from different locations.
 See the SETVIEWS command for information on how to link a program to an aplet when it does not appear on the primary menu. Note that if the name has spaces in it then it must be enclosed in quotes.

\section*{STOP}

This command can be used to abort execution of a program. Control resumes in the HOME view.


\section*{The Drawing commands}

\section*{ARC <x-center>;<y-center>;<radius>;<start angle>;<end angle>}

This command draws an arc on the screen. It uses the current values in the PLOT SETUP view as the screen coordinates and the settings in the the MODES view for


\section*{\(B O X<x 1>;<y 1>;<x 2>;<y 2>\)}

This draws a rectangular box on the screen using ( \(x 1, y 1\) ) and ( \(\mathrm{x} 2, \mathrm{y} 2\) ) as the corners. The coordinates are relative to the settings in the PLOT SETUP view.


\section*{ERASE}

This command erases the current display screen.

\section*{FREEZE}

This command halts execution until the user presses any key.

\section*{LINE <x1>;<y1>;<x2>;<y2>}

This draws a line on the screen using ( \(\mathrm{x} 1, \mathrm{y} 1\) ) and ( \(\mathrm{x} 2, \mathrm{y} 2\) ) as the ends. The coordinates are relative to the current settings in the PLOT SETUP view.

\section*{PIXON <x>;<y> and PIXOFF <x>;<y>}

This command turns a pixel point on or off at the specified point. The coordinates are relative to the current settings in the PLOT SETUP view.

\section*{TLINE <x1>;<y1>;<x2>;;<y2>}

This command is the same as LINE except that the line drawn reverses the current set/unset value of all pixels. It
 One of the aplets on The HP HOME view (at http://www.hphomeview.com) is called "Sine Define" and contains extensive use of this command.

\section*{The Graphics commands}

See the chapter "Programming the hp 39g+" on page 226 for examples illustrating some of the graphics commands used regularly.

\section*{The Loop commands}

FOR <variable> = <start value> TO
<end value> [STEP <increment>] <statements> END

This is a standard FOR...NEXT command. The STEP value is optional and is assumed to be 1 if not stated. Whatever you do, don't use NEXT to terminate the loop! It doesn't register as an error but all sort of strange things
 happen!

\section*{DO <statements> UNTIL <test clause> END}

This loop executes the statements within it until the test clause evaluates as true. It must execute at least once. The example right checks for a positive integer from the INPUT statement. To be even more user friendly you
 could let the user know what they had done wrong by adding another few lines of code within the DO loop of..

IF INT(N) \(\ddagger \mathrm{N}\) OR N \(\leq 0\) THEN
MSGBOX "Enter a positive integer only":
END:

\section*{WHILE <test clause> REPEAT <statements> END}

This is similar to the DO...UNTIL loop except that the test clause is evaluated before starting so that the loop may not be executed at all.

\section*{BREAK}

This command will exit from the current loop, resuming execution after the end of it. There is no GOTO <label> command in the language.

\section*{The Matrix commands}

\section*{EDITMAT <matrix var>}

This command pops up a window in which the user can edit or input a matrix with an [0K key at the bottom. When the user presses [0K, execution resumes after the EDITMAT statement.

\section*{REDIM <matrix var>;<size>}

This command is very useful if the size of a matrix is not known in advance. The user might be prompted to input the size and then these values used to resize it. Note that the dimensions must be supplied as a list variable. The SIZE command can also be used in this
 context as it returns a list variable when used with a matrix.

\section*{The Print commands}

These commands are supplied for use with the battery operated HP infra-red thermal printer that is designed for use with the hp 38g, hp 39g, hp 40g and hp 39g+.

\section*{PRDISPLAY}

If you place this command in a program then the current display will be sent to the infra-red printer.

\section*{PRHISTORY}

This command, whether issued in the HOME view or in a program, will send the entire contents of the History to the infra-red printer.

\section*{PRVAR <variable>}

This command, whether issued in the HOME view or in a program, will send the value of the variable to the infra-red printer. This can be used to capture and send images of graphs without need for programming as follows:
- set up the graph or image as required
- press ON+PLOT to capture the image and store it in grob G0
- in the HOME view, issue the command PRVAR GO.

\section*{The Prompt commands}

\section*{BEEP <frequency>;<duration>}

This will use the piezo crystal in the calculator to create a sound of the specified frequency for the specified duration (in seconds). The resulting frequency is not terribly accurate, varying by up to \(5 \%\) from one calculator to the next and depending also on the temperature.

The frequencies of the twelve semi-tone jumps in the harmonic scale form a geometric sequence, and since the ratio from C to \(\mathrm{C}^{\prime}\) is 2 , the ratio for each semi-tone must be \(\sqrt[12]{2}\). The standard frequency used in tuning instruments is usually 440 cycle/sec for the note A. Since much of the simple music used by students is written using the scale of C, I use \(440 /(\sqrt[12]{2})^{9}\) to find the frequency of C as 261.6 cycles/sec.

We can use this to form a standard 'header' for any program we want to use to play music. The header shown right in the rounded box sets up the
. 51-T:
261. 6 - \(\mathrm{C}=\)

12 NTHRODT 2PR: \(\mathrm{R}^{2} \mathrm{C} \mathrm{D}=\)
\(\mathrm{R}^{2} \mathrm{D} \cdot \mathrm{F}=\) R*E* \(R^{2} \mathrm{FPG}^{-}\)
\(\mathrm{R}^{2} \mathrm{G}+\mathrm{H}=\) \(R^{2} A+B=\)

BEEP F:T~2:
BEEP G; Tユ2:
URIT - G1T:
BEEP G:T~2:
BEEP F; T~2:
BEEP G; 2.5T:
BEEP F; T 2 :
BEEP G; T 2 :
BEEP R T T \(2:\)
BEEP G; T~2:
BEEP F; 1.5T: scale of \(C\) major. The code which then follows plays the first two bars of the tune "Strangers in the Night".

In this header, the duration of a note ( T ) is set to 0.5 seconds. It is easy to change the tempo of the music by adjusting this. In this case you may find that the music sounds a little better with T set to 0.55 or 0.6 seconds. T is a crotchet, T/2 a quaver etc.

\section*{CHOOSE <variable>;<title>;<menu option1>;....}

This command pops up a menu with the title specified and with however many options follow. The number of the menu option highlighted when the user presses OK is returned in the variable. The initial value of the
 determines which option is initially highlighted.

This value must be a valid one. Assigning an initial value outside the range of the menu may crash the program. If the user presses CANCL then a value of zero is returned but the program will still continue to execute from that point unless you include code to terminate it.

\section*{DISP <line number>;<expression>}

This command breaks the display up into 7 lines and allows output to them.

Using the DISP command on a line
 the screen before display. This means that it is not possible to use DISP to 'edit' material already present. The DISPXY command should be used for this purpose.

\section*{DISPXY <xpos>;<ypos>;<font>;<expression>}

This command displays the text/object/result contained in <expression> at the screen position specified using the font specified. An extensive example can be found in the chapter "Programming the hp 39g+" on page 226.

\section*{DISPTIME}

This command pops up a box displaying the calculator's internal time and date. These can be set by storing values to the variables Time and Date. Suppose the current time is 3:46:29 pm on the \(1^{\text {st }}\) of December, 1998 then you
 would store 15.4629 to Time and 12.011998 to Date.

\section*{GETKEY <variable>}

This pauses the execution until the user presses a key and stores the code for the key into the variable for later use. See the manual for how the value of the key changes according to whether it is pressed with or without the SHIFT or ALPHA keys. A key code of 53.1 would mean row 5 , column 3 and unshifted. It can't readily be used for games because execution pauses instead of continuing in the background.

\section*{INPUT <variable>;<title>;<prompt>;<message>;<default value>}

This command puts up an input view which can be used to obtain responses from the user. The degree of control over appearance is quite high as can be seen in the example.


If you want the default value to be whatever the user last input then use INPUT N; ; N instead. If you do this then you will need to store and initial reasonable value into \(N\) before the first use of the INPUT command.

\section*{MSGBOX <expression>}

This puts up a box with the text/expression you specify. If you want a newline character then just enclose a pressing of the ENTER key within the quotes.


\section*{PROMPT <variable>}

This is a short form of the INPUT statement for those that don't require such precision of control over appearance. The default value is the current value of the variable.


\section*{WAIT <duration>}

This command pauses execution for the specified number of seconds.

\section*{Calculator Tip}

This list does not cover anywhere near the full range of commands, but it does cover enough that a competent programmer will be able to work out the rest independently. It is also enough that an enthusiastic amateur will be able to accomplish the more common tasks required in programming the hp \(39 \mathrm{~g}+\).

\section*{The MATH MENU FUNCTIONS}

The MATH menu is accessed via the key below the APLET key. Any time that you are typing a value into any formula or setup screen you can insert mathematical functions via the MATH key.

The MATH menu is divided up into sections by mathematical topics. These topics are:
\begin{tabular}{|c|c|}
\hline Real & - rounding, roots, conversions and \% functions. \\
\hline Stat-Two & - bivariate functions. \\
\hline Symbolic & - functions for manipulating equations and symbols. \\
\hline Tests & - used in programming more than normal work. \\
\hline Trig & - sec, cosec etc. \\
\hline Calculus & - integration and differentiation \\
\hline Complex & - functions to manipulate complex numbers. \\
\hline Constants & - e, i and various others. Of more use in programming. \\
\hline Hyperb. & - the hyperbolic trig functions. \\
\hline List & - functions allowing manipulation and creation of lists of numbers, including columns of stats data. \\
\hline Loop & - iterative functions. \\
\hline Matrix & - a rich collection of functions to manipulate matrices. \\
\hline Polynom. & - another rich collection, this time to manipulate polynomials. \\
\hline Prob. & - functions used in probability calculations. \\
\hline
\end{tabular}

Some of these functions have little application at school level and will not be covered here. Others will be covered to varying depths. Anyone needing those not covered will find that after reading this manual they can be relatively easily deciphered from the manual that comes with the calculator.

The mechanics of accessing the MATH menu is very simple. We will illustrate the process using the Polynomial function POLYFORM, which is an extremely useful one. Change into the HOME view and then press the MATH key.


When you do you will see the screen on the right. The menu always first appears with the Real functions highlighted.


We could use the arrow keys to scroll down to the Polynomial functions but it is far faster to simply press the key labeled with the letter ' \(P\) ' (on the ' 5 ' key). It is not necessary to press the ALPHA key first. You will notice in the screen on the right that there are two groups of functions beginning with a ' \(P\) ' - being Polynomial and Probability. To reach Probability press the ' \(P\) ' key again.

Once you are in the correct group, press the right arrow key to move into the list of functions belonging to that group. Once again you have a choice of using the arrow keys or the key corresponding to the first letter of the function. Pressing the right arrow key again will move down the functions a 'page' at a time. In this case, since every single function in the Polynomial group begins with a ' \(P\) ', and there is only one 'page' of them, there is no difference between the methods. Move the highlight down to POLYFORM and then press the ENTER key.

Your HOME view should now look like this. You will notice that the first bracket has already been inserted for you.


Complete the expression...
\[
\text { POLYFORM }((X+2) \wedge 5-(3 X-1) \wedge 2, X) \quad\left(\text { using } X^{y} \text { key to get } \wedge\right)
\]
and then press the ENTER key.

You will find that the expression \((x+2)^{5}-(3 x-1)^{2}\) has been expanded on the following line to \(x \wedge 5+10 * x \wedge 4+40 * x \wedge 3+71 * \ldots\) etc

There are two ways of seeing the complete result.


You can move the highlight up to that line and LIPT it. You could then move back and forth through the line using the arrow keys to see it in full.

A better method is to press the screen key labeled \(\operatorname{SHD}\). This gives (after a pause) the result shown above. The portion off the edge of the screen can be seen by scrolling right using the arrow key. More details will be given of this POLYFORM function in the Polynomial group when we get to it.

On the pages which follow we will look at most of the functions in each group. Some of the functions are not likely to be used at school level and so will not be covered since this book is primarily aimed at teachers and students of high school, as is the hp \(39 \mathrm{~g}+\). If you need the higher level commands then consult the manual.

You can obtain 'help' for any function in the HOME view by using the SYNTAX key to obtain the word HELPWITH and then typing the function name. An example is shown right for the DISPXY command. Thus this is saying that you have to type \(x\) and \(y\) coordinates, followed
 by a font number and the item or items to be displayed.

There is a limit to how much this HELPWITH statement will aid a normal user of the calculator, since these syntax statements are usually more suited to a programmer type than to a student.

One piece of terminology that will be used in this section of the manual is 'argument'. The arguments of a function are the pieces of information it is expecting you to feed it before it will give you an answer. These might be numbers, variable names, lists, matrices or algebraic expressions.

The calculator will not guess what you mean. If you don't feed it the information it requires then it will simply give you an error message.


These numbers could also be the contents of memories. Suppose you have stored 10 in memory A and 15 in B. Then \(\operatorname{MAX}(A, B)\) will give 15 .

Finally, if you look at the screenshot at the top of the previous page you will see that is another set of menus available via the CDE key, which stands for Constants. Pressing this key result in a different menu being displayed, which shows the 'Program Constants'. You can try it if you like but the values listed in these menus are generally only of use to programmers.

\section*{The 'Real' group of functions}


\section*{CEILING(<num>)}

This is a 'rounding' function but different in that it always rounds up to the integer above. Mainly of interest to programmers.

Eg. \(\operatorname{CEILING}(3.2)=4\)
CEILING (32.99) = 33
CEILING ( \((12+\sqrt{6}) / 7)\)
\(=\) CEILING(2.0642...) \(=3\)
Note: CEILING \((-2.56)=-2\) not -3 . The


CEILING function rounds up to the next integer above, which is -2 .

See also: ROUND, TRUNCATE, FLOOR, INT

\section*{\(D E G \rightarrow R A D(<d e g>)\)}

This function converts degrees to radians.
Eg. \(D E G \rightarrow \operatorname{RAD}(30)=0.5235 \ldots\)
\(\operatorname{DEG} \rightarrow \operatorname{RAD}(180)=3.1415926 \ldots\)

See also: \(\mathrm{RAD} \rightarrow \mathrm{DEG}, \underline{\mathrm{HMS} \rightarrow} \rightarrow \underset{\mathrm{HMS}}{\boldsymbol{H}}\)

\section*{FLOOR(num)}

This function is the same as the CEILING function, except that it always rounds down.

Eg. \(\operatorname{FLOOR}(3.75)=3\)
\(\operatorname{FLOOR}(45.01)=45\)
Note: \(\operatorname{FLOOR}(-2.56)=-3\) not -2 .
The FLOOR function is the same as the mathematical function 'greatest integer' which is studied in many mathematical courses.
If you want to graph the greatest integer

 \(\psi F 1(X)=F L O D R(X)\)

\section*{\(F E(x)=\)}
\(\mathrm{F} 3(\mathrm{x})=\)
\(\mathrm{F} 4 \mathrm{C})=\)
\(F 5(x)=\)

 function then you will need to use the PLOT SETUP view to turn off CONNECT first, since the graph is supposed to be a discontinuous step function. The result with CONNECT turned on is not good.

\section*{FNROOT(express.,guess)}

This function is like a mini version of the Solve aplet. If you feed it an algebraic expression and an initial guess it will start from your guess and find the value which makes the expression zero. Don't bother. It's a lot easier to use the
 Solve aplet. This is a tool for programmers so that they can access the Solve abilities within programs.

You need to tell it what variable to expect in the expression, in addition to providing it with an initial guess. If there is only one answer then any guess will do, but if more than one solution is possible then more care needs to be taken with your guess to ensure that it is in
 the neighborhood of your desired solution.

Eg. (a) Solve \(x^{2}-3 x-5=0\)
Use: FNROOT ( \(\mathrm{X}^{2}-3 \mathrm{X}-5, \mathrm{X}, 2\) )
(b) Solve \(\frac{d}{3}-5=\frac{3 d}{4}+1\)

Use: FNROOT(D/3-5-3D/4-1,D,0)
As with Solve, if your expression involves more than one variable then whatever values are currently in memory are used for the other variables.

See also: QUAD, POLYROOT

\section*{FRAC(num)}

This function gives the decimal part of any number, discarding the integer part.

Eg. \(\quad \operatorname{FRAC}(3.45)=0.45\)
\(\operatorname{FRAC}(1234.03456)=0.03456\)


See also: INT, FLOOR, CEILING, ROUND, TRUNCATE,FRAC

\section*{HMS \(\rightarrow\) (dd.mmss)}

This function works with time and angles. It converts degrees, minutes and seconds to degrees, and also hours, minutes and seconds to decimal time.

The calculator can convert a value such as \(45^{\circ} 23^{\prime} 17^{\prime \prime}\) if you put it into the form 45.2317 and then use the HMS \(\rightarrow\) function.

Eg. \(\quad \sin \left(45^{\circ} 23^{\prime} 17^{\prime \prime}\right)\) would be done as
 SIN (HMS \(\rightarrow(45.2317)\) )
\(\cos \left(5^{\circ} 3^{\prime} 7^{\prime \prime}\right)\) would be done as \(\operatorname{COS}(\) HMS \(\rightarrow(5.0307))\)
This function, together with \(\rightarrow \mathrm{HMS}\), can also be used to deal with time.
Eg. What time will it be 1 hr 34 min . and 15 sec . after 3 min . past 6 pm ?
Type: HMS \(\rightarrow(18.03)+\) HMS \(\rightarrow(1.3415)\)
Ans: 37 min .15 sec . past 7 pm . (see right)


See also: \(\rightarrow\) HMS , RAD \(\rightarrow\) DEG , DEG \(\rightarrow\) RAD

\section*{\(\rightarrow\) HMS(num)}

This function works in the same way as the HMS \(\rightarrow\) function but in the opposite direction. It converts decimal degrees (or time) to degrees (or hours), minutes and seconds. The format of the returned answer is DD.MMSS (HH.MMSS)


Eg. \(\quad 15 \cdot 5^{\circ}\) would become \(15 \cdot 3\), meaning \(15^{\circ} 30^{\prime}\).
\(45.38805555 \rightarrow 45.2317\) ( \(45^{\circ} 23^{\prime} 17^{\prime \prime}\) )
3.75 hours \(\rightarrow 3.45\) (3 hours 45 min .)

See also: \(\underline{H M S ~} \rightarrow\) RAD \(\rightarrow\) DEG, DEG \(\rightarrow\) RAD

\section*{INT(num)}

This function is related to the FLOOR and CEILING functions. Unlike those two, which consistently move down or up respectively, the INT function simply drops the fractional part of the number.


Eg. \(\quad \operatorname{INT}(3.786)=3\)
\(\operatorname{INT}(-5.84)=-5\)
See also: FLOOR, CEILING, ROUND, TRUNCATE, FRAC

\section*{MANT(num)}

This function returns the mantissa (numerical part) of the number you feed it when transformed into scientific notation. It would be used with the XPON function, which returns the
\begin{tabular}{|c|c|}
\hline  & L* \\
\hline & 4.8723 \\
\hline  & 5.087 \\
\hline ETITI & \\
\hline
\end{tabular}

Eg. Change 487.23 into scientific notation to get \(4.8723 \times 10^{2}\).
MANT (487.23) \(=4.8723\)
\(\operatorname{XPON}(487.23)=2\)
Change 0.0005087 into scientific notation to get \(5.087 \times 10^{-4}\).
\(\operatorname{MANT}(0.0005087)=5.087\) \(\operatorname{XPON}(0.0005087)=-4\)

See also: XPON

\section*{MAX(num1,num2)}

This function returns the larger of two values entered. This is not needed in your normal calculations, since you could just look at the numbers, but a programmer will be writing a program which deals with numbers not known in advance.


Eg. \(\operatorname{MAX}(3,5)=5\)
See also: MIN

\section*{MIN(num1,num2)}

As with MAX, this function is used mainly by programmers. It returns the smaller of the two numbers entered.

Eg. \(\operatorname{MIN}(3,5)=3\)


See also: MAX

\section*{num MOD divisor}

For those not familiar with modulo arithmetic, it will suffice to say that this function gives you the remainder when one number is divided by another. It is considered to be an mathematical operator in the same way that a plus, minus, times or divide sign is. Because
 of this it does not need its arguments placed in brackets as most of the other functions in the MATH menu do.

Eg. \(43+5=48\)
43 MOD \(5=3\)
35 MOD \(7=0\)
-14 MOD \(5=1\)

\section*{\% function}


Eg. \(\quad 10 \%\) of \(\$ 400=\$ 40\)
See also: \%, \%TOTAL, \%CHANGE

\section*{\%CHANGE}

This function calculates the percentage change moving from \(X\) to \(Y\) using the formula \(100(\mathrm{Y}-\mathrm{X})\) /X. It can be used to calculate (for example) percentage profit and loss.


Eg. I buy a fridge for \(\$ 400\) and sell it for \(\$ 440\).
What is my profit as a percentage?
Use: \%CHANGE \((400,440)\)
I sell a toy for \(\$ 5.95\) that normally sells for \(\$ 6.50\)
What is the discount as a percentage?
Use: \%CHANGE \(6.50,5.95\) )
See also: \% , \%TOTAL
\%TOTAL

To find out what percentage \(X\) is of \(Y\), use the function \%TOTAL(Y,X). Note the reversed order.


Eg. What percentage is a score of 53 out of 81 on a test?
Use: \%TOTAL \((81,53)\)
What percentage is 124 of \(112 ?\)
Use: \% TOTAL \((112,124)\)
See also: \%, \%CHANGE

\section*{\(R A D \rightarrow D E G(r a d)\)}

This function converts radians to degrees.
Eg. \(\operatorname{RAD} \rightarrow \operatorname{DEG}(\pi / 6)=30^{\circ}\)
\[
\operatorname{RAD} \rightarrow \operatorname{DEG}(5)=286.48^{\circ}
\]


See also: \(\underline{D E G \rightarrow R A D}, \underline{H M S} \rightarrow \boldsymbol{\rightarrow} \rightarrow \mathrm{HMS}\)

\section*{ROUND(num,dec.pts)}

This function rounds off a supplied number to the specified number of decimal places (d.p.).

Eg. Round 66.65 to 1 d.p.
Use: \(\operatorname{ROUND}(66.65,1)=66.7\)


Round 34.56784 to 2 d.p.
Use: \(\operatorname{ROUND}(34.56784,2)=34.57\)
This function is also capable of rounding off to a specified number of significant figures (s.f.). To do this, simply put a negative sign on the second argument.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{[} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline ETIIT & \\
\hline
\end{tabular}

Round 32345 to the nearest thousand.
Use: \(\operatorname{ROUND}(32345,-2)=32000\)
Round 3405.63475 to 6 s.f.
Use: \(\operatorname{ROUND}(3405.63475,-6)=3405.63\)
See also: INT, FLOOR, CEILING, TRUNCATE, FRAC

\section*{SIGN(num)}

Another function designed more for programmers, returning a value of \(+1,0\) or -1 depending on whether the number supplied is positive, zero or negative.


Eg. \(\operatorname{SIGN}(-45)=-1\)
See also: XPON, MANT
Note: See also SIGN in the Complex group of functions (page 263).

\section*{TRUNCATE(num)}

This function operates similarly to the ROUND function, but simply drops the extra digits instead of rounding up or down. It is somewhat similar in effect to the FLOOR function but the TRUNCATE function will work
 to any number of decimal places or significant figures instead of always dropping to the nearest lower integer value.

Eg. TRUNCATE \((3405.6375,-6)=3405.63\)
\(\operatorname{TRUNCATE}(32.889,1)=32.8\)
See also: INT, FLOOR, CEILING, ROUND, FRAC

\section*{XPON(num)}

This function returns the exponent (indicial part) when transformed into scientific notation of the number you feed it. It would be used with the XPON function, which returns the power part of the number when in scientific notation.


Eg. Change \(487 \cdot 23\) into scientific notation to get \(4.8723 \times 10^{2}\).
MANT (487.23) \(=4.8723\)
\(\operatorname{XPON}(487.23)=2\)
Change 0.0005087 into scientific notation to get \(5.087 \times 10^{-4}\). \(\operatorname{MANT}(0.0005087)=5.087 \operatorname{XPON}(0.0005087)=-4\)

This function could be of use to you if you are just learning scientific notation, but is of more use to people writing programs. A normal user would just look at the number and see the answer, but a programmer would not know in advance what number was going to be used and so might use MANT and XPON.

See also: MANT

\section*{The 'Stat-Two' group of functions}

\section*{PREDY(x-val)}


This function predicts the \(y\) value for a pair of columns set up as bivariate data in the Statistics aplet. This is discussed in more detail in the section covering the Statistics aplet, but a brief summary will be given here.

It assumes that:
(i) the bivariate data is entered into a pair of columns (eg. C1 and C2, with C1 containing the independent data and C2 the dependent data),
and (ii) that these two columns have been specified in the SYMB view to be paired bivariate data,
and (iii) that this data set has been graphed in the PLOT view and that the FIT screen key has been used to plot the line of best fit for the pair of columns,

If these conditions are satisfied then the function PREDY (3.5) will produce a predicted \(y\) (dependent) value for the \(x\) (indep.) value of \(3 \cdot 5\).
\begin{tabular}{|c|c|c|}
\hline - \(\left.3^{2}-4\right)\) & & \(\square\) \\
\hline & 2.2 & 97 \\
\hline \multicolumn{2}{|l|}{PREDY(3.5)} & \\
\hline \multicolumn{3}{|l|}{36.0763157895} \\
\hline STIT & & \\
\hline
\end{tabular}

\section*{Calculator Tip}

The line of best fit used in the function PREDY is whichever one was last plotted. It is up to you to ensure that this is in fact the one you want used! It is far easier and more reliable to use the facilities provided in the PLOT view (see page 140) to calculate PREDY values.

\section*{PREDX(y-val)}

The PREDX function simply reverses the line of best fit. For example, the equation \(\hat{Y}=0 \cdot 8199 X+1 \cdot 1662\) earlier would use \(\hat{X}=\frac{(Y-1.1662)}{0.8199}\) to predict the \(X\) values.

Note: See page 146 for important information on this function.

\section*{The 'Symbolic' group of functions}


\section*{The = 'function'}

Although this is listed in the MATH menu as if it were a function, it is not really. Except in programming, the = sign is simply used in exactly the way that you would expect it to be, mainly in the Solve aplet. It's easier to obtain the = sign directly from the keyboard.

\section*{ISOLATE(expression, var-name)}

This function will rearrange a formula so that its subject is another variable. To do this, the formula must be rewritten so that it is an expression which equals zero. The ISOLATE function then rearranges the formula in terms of that variable.

Eg. 1 Rewrite the formula \(d=\frac{1}{2} a t^{2}\) in ' t '.


Firstly, rewrite as: \(\quad d-\frac{1}{2} a t^{2}=0\)


Use: ISOLATE (D-AT \(\left.{ }^{2} / 2, T\right)\)
The result needs interpretation as the answer should be \(T= \pm \sqrt{\frac{2 D}{A}}\). Firstly, the ' \(\mathrm{T}=\) ' is missing and secondly, the symbol ' S 1 ' stands for the \(\pm\) sign.

Eg. 2 Make X the subject of the formula \(B=\frac{-3}{(X-A)}\).

Using: ISOLATE (3/(X-A)+B,X)
gives: \(\quad 3 /-B+A\)
equivalent to: \(X=\frac{-3}{B}+A\).
The ISOLATE function is very useful within its limitations, but it will not deal with a lot of formulae. See right:

See also: The Solve aplet, FNROOT, QUAD


\section*{LINEAR?(expression, var.name)}

This is another of those functions which is probably aimed more at the programmer than at the normal user. It is designed to test whether a supplied expression is linear or non-linear in the variable you specify, returning zero for non-linear and 1 for linear.

Eg. Suppose we use the expression \(A X^{2}-B+4\)
If \(X\) is the variable and \(A\) and \(B\) are both constants (say \(A=4, \quad B=5\) ) then the expression \(A X^{2}-B+4\) would become \(4 X^{2}-5+4\) which would be non-linear. Thus LINEAR? returns zero (right).

On the other hand, if \(X\) were one of the constants (say \(X=6\) ) and A were the variable, then the expression \(A X^{2}-B+4\) would become \(A \times 6^{2}-5+4\) or \(36 A-1\), which is linear. Thus LINEAR? would return 1.


The main use for this is going to be when a programmer does not know in advance what function the user is going to type in.

\section*{QUAD(expression,var.name)}

This function uses the quadratic formula \(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\) to give both roots of a quadratic, using the 's1' formal variable to represent the \(\pm\) symbol. The quadratic is

entered as an expression, and you must indicate which variable is being solved for, since you could have an equation such as \(P x^{2}+Q x-5=0\) where \(P\) and \(Q\) were memory values, and you would need to specify to solve for \(X\).

Eg. Solve \(x^{2}-4 x-5=0\)
Use QUAD ( \(\mathrm{X}_{2}-4 \mathrm{X}-5, \mathrm{X}\) )
Answer: \(\quad(4+S 1 * 6) / 2\)
It is now up to you to interpret this algebraically as:
\[
\begin{aligned}
x & =\frac{4 \pm 6}{2} \\
& =\frac{4+6}{2} \text { or } \frac{4-6}{2} \\
& =5 \text { or }-1
\end{aligned}
\]

If you are simply after the roots of the quadratic then it is far better to use the POLYROOT function (page 284). If you would like a solution such as \(\frac{3+\sqrt{5}}{2}\) rather than 2.6180 then the advantage of QUAD is that you can COPY the result, edit the line to remove all but the decimal root and square it to find the original discriminant.

The QUAD function does have one advantage over other methods, in that it will give a complex number solution to quadratics which have complex roots. This may well make it worth using in problems where a complex
 answer is acceptable or required. Complex numbers are expressed on the \(\mathrm{hp} 39 \mathrm{~g}+\) in the form \((\mathrm{a}, \mathrm{b})\) representing \(a+b i\). Thus the answer to the second quadratic shown above would represent \(\frac{-2 \pm \sqrt{-112}}{6}\) with the \(\sqrt{-112}\) written as a complex number.

See also: FNROOT, LINEAR?

\section*{QUOTE(var.name)}

Intended for use mainly by programmers. Programmers sometimes want to store a function such as \(\mathrm{X}^{2}-4\) into one of \(\mathrm{F} 1(\mathrm{X}) \ldots \mathrm{F} 9(\mathrm{X})\) using ETIV. It turns out that if you use F1 \(\left(\mathrm{X}^{2}-4\right)\) then it won't be entered symbolically. Instead, the contents of \(X\) (a number) is entered substituted and the expression evaluated to give a numeric result. The QUOTE function fixes this. For example, QUOTE (X) \({ }^{2}-4\) F1 ( \(X\) ) will ensure a symbolic result.

An easier method of storing a function into an aplet in a program is to enclose it in single quotes. For example ' \((X)^{2}-4^{\prime} F F 1(X)\) would serve the same purpose as QUOTE \((X)^{2}-4 F 1(X)\). On the other hand, entering F1 ('X') will not work but F1 (QUOTE (X)) will. See Example 1 on page 217 in the chapter "Programming on the hp \(39 \mathrm{~g}+\) " for an example of use.

\section*{The | function written as: expression | (var1=value,var2=value,...)}

This is called the 'where' function. The reason for this is that it is used to evaluate formulas, of the type when one would say "Evaluate ....., where \(\mathrm{a}=\) \(5, b=4\) etc". The formula must be in the form of an expression rather than an equation. You should enter the equation first, then the 'where' symbol and then the values of all the variables in the expression. Any not supplied will be evaluated using the value currently stored in that memory. This is again a function which is of more use to programmers since this is probably more flexibly handled in the Solve aplet.

Eg. 1 Evaluate \(a=\frac{b+c}{d}\) where \(\mathrm{b}=6, \mathrm{c}=-2\) and \(\mathrm{d}=8\)
Use: \(\quad(B+C) / D \mid(B=6, C=-2, D=8)\) Answer: 0.5


Eg. 2 Using the formula \(d=\frac{1}{2} a t^{2}\), find the distance d which an object would fall under Earth's gravity of \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) in a time of 6 seconds.

Use: \(\quad .5 \mathrm{AT}^{2} \mid(\mathrm{A}=9.8, \mathrm{~T}=6)\)
Answer: \(\quad 176.4\) meters
See also: ISOLATE

\section*{The 'Tests' group of functions}


These are all functions which are of interest only to programmers, and consequently we will not cover them here.

An introduction to programming on the hp 39g+ is covered in an earlier chapter (see page 212) but those wanting more detail than is given there must consult the manual. If you want more information then download aplets from the internet and dismantle them.

\section*{The 'Trigonometric' \& 'Hyperbolic' groups of functions}


These two groups of functions cover the Trigonometry functions, plus others, which are less commonly used and which have consequently not been given their own keys on the face of the calculator. Use them in the same way as the normal SIN, COS and TAN functions.

\section*{COT, SEC etc}

In the Trig. group of functions you will find:
Function
COT (cotangent)
CSC (cosec/cosecant)
SEC (secant)

Inverse function
ACOT (arc-cotangent)
ACSC (arc-cosec)
ASEC (arc-secant)
In the Hyperb. group of functions you will find (amongst other things):

\section*{Function}

SINH (hyperbolic sine or "shine")
COSH (hyperbolic cos or "cosh")
TANH (hyperbolic tan)

Inverse function
ASINH (arc-hyp.sine)
ACOSH (arc-hyp.cos)
ATANH (arc-hyp.tan)

Some further functions are available in the Hyperbolic group of functions. They are duplicates of functions available on the face of the calculator but give more accurate answers. They would primarily be of use to those people, such as architects and engineers, for whom high accuracy is paramount. These are:

\section*{EXP(num)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multirow[b]{2}{*}{- \({ }^{\text {- }} 08\)} & \multicolumn{2}{|l|}{1. 0202613403} \\
\hline & \multicolumn{2}{|l|}{1. 0202013400} \\
\hline ETin & & \\
\hline
\end{tabular}

This function gives a more accurate answer than the key labeled \(\mathrm{e}^{\wedge}\) which appears above the LN key on the calculator. As you can see on the right, the difference is normally not detectable even to 12 significant figures.

The difference is only apparent for some values and even then is hardly earthshattering.


\section*{ALOG(num)}

This function provides the same result as the key labeled 10^ on the keyboard above the LOG key. It is another function giving greater accuracy than the one it 'replaces'. This greater accuracy would never be required in a
 school setting.

\section*{EXPM1(num)}

This function is designed to be more accurate when anti-logging very small values close to zero. It gives the value not of \(e^{x}\) but of \(e^{x}-1\) (EXPM1: exp minus 1). You may wonder how this is an advantage, since you must then add 1 to obtain the correct answer, but a look at the screen opposite will show you.

As you can see, the normal keyboard function \(\mathrm{e}^{\wedge}\) gives an answer to \(e^{0.0000003}\) of \(1 \cdot 0000003\). This gives the impression that it is an exact value (since it doesn't show a full 12 significant
 digits). The true answer is 1.000000300000045 . ... but the final digits have been lost in the rounding off to 12 sig. figures. By giving an answer of \(e^{x}-1\), the leading 1 is lost, freeing the calculator to show more accuracy by dropping the leading six zeros. This is not normally be needed.

\section*{LNP1(num)}

Since the \(\ln (x)\) function is asymptotic to the y axis as x approaches zero, the natural logs of numbers close to zero are very large negatives, and possibly inaccurate. The function LNP1 ("In plus 1"). By finding the natural \(\log\) of \(x+1\) rather than of \(x\), the function becomes able to do its calculations in a domain in which greater accuracy is possible. This is not something which would normally be of concern at school level.

\section*{The 'Calculus' group of functions}


This group consists of three functions, the first two of which are discussed in detail in the chapter dealing with the Function aplet (see pages 65 to 83). The functions are the integrate, or function, the differentiate, or \(\dot{d}\) function, and the TAYLOR function, discussed below.

Briefly, a Taylor polynomial allows you to approximate the graph (and hence values) of a complicated function via a simpler polynomial function. For example, \(\operatorname{SIN}(X)\) can be approximated by taking terms from the polynomial:
\[
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\ldots
\end{aligned}
\]

The screen shot on the right shows the calculator deriving the Taylor polynomial for \(\sin (x)\) up to the \(7^{\text {th }}\) power.

The first is calculated with MODES set to Standard, the second with MODES set to Fraction 4. The screen shot below shows the fractional polynomial in more detail after highlighting it and pressing 5 [10


\section*{The 'Complex’ group of functions}


Complex numbers on the hp 39g+ can be entered in either of two ways. Firstly, in the same way as they are commonly written in mathematical workings: \(\quad a+b i\). Secondly, as an ordered pair: \((a, b)\).

For example, \(3+2 i\) could be entered into the calculator exactly as it is written, with the ' \(i\) ' obtained using the ALPHA key, pressing the SHIFT key first to get a lowercase \(i\). Alternatively you can enter it directly as an
\begin{tabular}{|c|c|}
\hline  & \\
\hline & \((3,2)\) \\
\hline 3+2*i & \[
(3,2)
\] \\
\hline STIT & \\
\hline
\end{tabular} ordered pair.

As soon as you press ENTER, the calculator immediately converts the \(a+b i\) form into an ordered pair. The History retains the original in case you need to [DIPT it later for re-use.

The exception is when you enter a complex number in rcis form using the \(\mathcal{Z}\) (angle) sign on the keyboard. When you do this the calculator converts to a more explicit rcis format as shown right. Try it.


Complex numbers can be used with all trigonometric and hyperbolic function, as well as with matrices, lists and some real-number and keyboard functions.

Just as real numbers can be stored into the alphabetic memories \(A\) to \(Z\), there are 10 special memories \(\mathrm{Z1}, \mathrm{Z2}\).. \(\mathrm{Z9}, \mathrm{z0}\) which are provided to store complex numbers.


In addition to the trig functions, there are other functions that take complex arguments.

\section*{ABS(real or complex)}

The absolute function, which is found on the keyboard above the -X key, returns the absolute value of a real number.


Eg. \(\operatorname{ABS}(-3)\) returns a value of 3 .
When you use the absolute function on a complex number \(a+b i\) it returns the magnitude of the complex number \(\sqrt{a^{2}+b^{2}}\).

\section*{SIGN(real or complex)}

This function is part of the Real group but is very useful with complex numbers and so is also covered here. If given a vector/complex number ( \(a, b\) ), SIGN will return another vector/complex number which is a unit vector in the direction of \((a, b)\).

i.e. \(\operatorname{SIGN}((A, B))\) returns \(\left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right)\)

This is very useful, not just in complex numbers, but also in vector problems.
See also: SIGN (in the Real group), IM, RE, ARG, CONJ

\section*{ARG(complex or vector)}

This function, also found on the keyboard, returns the size of the angle defined by regarding the complex number as a vector. For example ARG(4+2i) would be \(26 \cdot 565^{\circ}\). The same information can, of course, be obtained using trig.

The reason for the double brackets is that every function used by the calculator uses brackets (hence the outer pair) but so too do complex numbers (hence the inner pair). Using ARG(a+bi) instead avoids this.

\section*{CONJ(complex)}

This function returns the complex conjugate.
Eg. If \(z=2+3 i\), then find the complex
 conjugate \(\bar{z}\).

Answer (see right): \(\bar{z}=2-3 i\)
See also: IM, ARG, RE

\section*{IM(complex) \&}

RE(complex)
These functions return the imaginary and real parts of the complex number supplied.

See also: CONJ, ARG, RE
Note: As mentioned earlier, a very useful function ( \(\mathcal{4}\) ) can be found on the keyboard as the SHIFT function for 'subtract'. If you enter a complex number in \((r, \boldsymbol{\theta})\) form as shown right, then the calculator will display it in the form \(r \cos (\theta)+r \sin (\theta)\) from, and as an \((a, b)\) ordered pair. Note the \(r \cos (\theta)+r \sin (\theta)\) form is used only when in radian mode.


\section*{The 'Constant' group of functions}

These 'functions' consist of a set of commonly
 occurring constants.


Two of them, MAXREAL and MINREAL are mainly of use to programmers except for an important influence on the evaluation of limits (see page 88). They consist, respectively, of the largest and smallest numbers with which the calculator is capable of dealing, and are there for use by programmers as a check to ensure that calculations within a program have not overflowed the capacity of the calculator.

The other three, \(\pi, i\), and \(e\), are far more easily obtained via the keyboard.
The first, \(\pi\), is available via a key on the face of the calculator above the 3 key. The other two, \(i \& e\), are easily obtained as lowercase letters via the ALPHA key, pressing SHIFT first to get lowercase.

\section*{The 'List' group of functions}

\section*{CONCAT(\{list \(\}\)}

This function concatenates two lists appending one on to the end of the other in the order that you specify.

Eg. \(\quad L 1=\{2,5,-2,10,3.75\}\)

\(\mathrm{L} 2=\{1,2,3,4,5\}\)


CONCAT(L1, L2) \(=\{2,5,-2,10,3.75,1,2,3,4,5\}\)
CONCAT (L1, \{5\}) LI would add another element of value 5 onto the end of list L1, storing the resulting longer list back into L1.

\section*{4LIST(\{list \})}

This function produces a list which contains the differences between successive values in the supplied list. The resulting list has a length one less than the original.

Eg. \(\quad \mathrm{L} 1=\{1,4,7,10,13\}\)
\(\Delta \operatorname{LIST}(\mathrm{L} 1)=\{3,3,3,3\}\)


\section*{MAKELIST}

This function produces a list of the length specified using a rule of your choice. It is very useful, not only in programming but in statistical simulations and modeling.

The syntax is: MAKELIST(expression,variable name,start,end,increment) where expression is the mathematical rule used to generate the numbers.
variable name is the variable that is to be used in the expression (any other letters will be taken constants). start is the first value that variable name is be given.
end is the largest value that variable name is to take.
and increment is the amount that variable name should be incremented by.

Eg. 1 MAKELIST \(\left(x^{2}, x, 1,10,2\right)\) PL1
produces \(\{1,9,25,49,81\}\) as \(X\) goes from 1 to 3 to 5 to ... and also stores the result into L1.

Eg. 2 MAKELIST(RANDOM, \(\mathrm{X}, 1,10,1\) ) produces a set of 10 random numbers. The X in this case serves only as a counter.

Eg. 3 MAKELIST(3, \(\mathrm{x}, 1,10,2\) )
produces \(\{3,3,3,3,3,3,3,3,3,3\}\).

The MAKELIST function can also be used to simulate observations on random variables.

For example, suppose we wish to simulate 10 Bernoulli trials with \(p=0.75\). We can use the fact that a test like ( \(\mathrm{X}<4\) ) or \((\mathrm{Y}>0.2\) ) returns a value of either 1 (if the test is true) or 0 (if the test is false).

\section*{}

HAKELIST \(S, X, 1,10,1)\)
\(4,3,3,3,3,3,3,3,3,32\)
MRKELIST REAHDOH , \(75, \mathrm{X}\)
\(\{1,0,1,1,1,1,0,0,1,1\}\)

ETill

MAKELIST(RANDOM \(<0.75, \mathrm{X}, 1,10,1\) )
will return a list of 1 's and 0's corresponding to the simulated Bernoulli trials.

Various examples of this process are given in the 'Tips and Tricks' section which immediately follows the chapter on Univariate Statistics. See page 130.

\section*{\(\pi\) LIST(\{list \(\}\) )}

This function returns the product of all the elements of a list.
Eg. \(\quad\) TiLIST \((\{2,3,5\})\) would return a value of 30 .

\section*{POS(\{list\},num)}

This function conducts a search of a list. It returns the position in the list of the first occurrence of the number you specify (see example right). It is of more use to programmers, who will not know in advance
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{-}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\[
\operatorname{POSCL1}, 16 ; 8,5,7,10,139
\]} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{ETII} \\
\hline
\end{tabular} what a list contains.

If the number specified is not in the list it returns zero. If the value occurs in more than one place then only the first position is reported. The value specified can be either a number (as shown) or a variable or an expression to be evaluated.

\section*{SIZE(\{list \}) and SIZE(matrix)}

This function returns the size of the list or matrix specified. Since normal users would probably know anyway, and could find out easily via the list catalog, this is clearly another of those functions which are of more use to programmers (who won't know when they write their program just how long the list you will ask it to deal with will be when you eventually run the program). If the object is a matrix then the return value is a two element list as \{rows, columns\}.

\section*{ELIST(\{list\})}

This function returns the sum of all the elements of a list.
Eg. \(\quad \operatorname{List}(\{2,3,5\})\) would return a value of 10 .

\section*{REVERSE(\{list \(\}\) )}

This function reverses the order of elements in a list.
\begin{tabular}{|c|c|}
\hline \% & \[
\overline{4 \pi}
\] \\
\hline LLIST( \(2,3,5)\) & 16 \\
\hline REVERSECS 4,1 , & g) \\
\hline -10: & 4:25 \\
\hline ETITP & \\
\hline
\end{tabular}

Eg. \(\operatorname{REVERSE}(\{2,4,1,7,10\})\) would return \(\{10,7,1,4,2\}\)

\section*{SORT(\{list\})}

This function returns a list that is sorted into ascending order.

If you want the list in descending order instead
 then use REVERSE(SORT(\{1ist\})).

See page 147 for an example of using SORT to assign rank orders.

\section*{The 'Loop' group of functions}


This is an interesting group of functions that may be of use for students studying discrete functions and sequences.

\section*{ITERATE(expression, var.name,strt,num.iter.)}

This function evaluates an expression a specified number of times, starting with a supplied initial value an using the answer to the previous evaluation as the value for the variable in the next evaluation.

Eg. ITERATE \(\left(X^{2}-1, X, 2,5\right)\) gives an answer of 15745023
This answer is obtained as follows:
\begin{tabular}{|c|c|c|}
\hline initial value: & \[
\begin{aligned}
& X=2 \\
& x^{2}-1=3
\end{aligned}
\] & first iteration \\
\hline \multirow[t]{2}{*}{new value:} & X=3 & second iteration \\
\hline & \[
x^{2}-1=8
\] & \\
\hline \multirow[t]{2}{*}{new value} & \(\mathrm{X}=8\) & third iteration \\
\hline & \[
x^{2}-1=63
\] & \\
\hline \multirow[t]{2}{*}{new value} & \(\mathrm{X}=63\) & fourth iteration \\
\hline & \[
x^{2}-1=3968
\] & \\
\hline new value & X=3968 & fifth iteration \\
\hline & \(x^{2}-1=15745\) & 5023 \\
\hline
\end{tabular}

new value: \(\mathrm{X}=3 \quad\) second iteration
\(x^{2}-1=8\)
\(X=8 \quad\) third iteration
\(x^{2}-1=63\)
\(\mathrm{X}=63 \quad\) fourth iteration
\(x^{2}-1=3968\)
\(x^{2}-1=15745023\)

Final answer: \(X=15745023\)

\section*{RECURSE}

This functions is provided for programmers to let them define functions in the Sequence aplet.

For example, typing RECURSE \((\mathrm{U}, \mathrm{U}(\mathrm{N}-1) * \mathrm{~N}, 1,2)\) PU1(N) seemingly produces no useful result in the HOME view, but would produce the result shown right in the SYMB view of the Sequence aplet. The resulting sequence is the factorial numbers.

The syntax is:
RECURSE(<seq.name>,<defn of term n>,<1st term>,<2nd term>)
and it must be ETVed into a sequence such as U1, U2 . . U9, U0 for it to have any meaning.

\section*{\(\Sigma\) (SUMMATION)}

This function, also available on the keyboard, offers a way of calculating the results of summation notation problems. The syntax of the function is ordered in the same way as one reads a summation expression (see the examples below).

Eg. \(1 \sum_{i=1}^{5} i^{2}\) which expands to \(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\) giving an answer of 55 , can be evaluated using \(\quad \Omega\left(\mathrm{I}=1,5, \mathrm{I}^{2}\right)\)

Eg. \(2 \sum_{i=1}^{6} x_{i}\) where \(x_{1}=-2, x_{2}=10, x_{3}=13, x_{4}=11, x_{5}=-20, x_{6}=2\)
can be evaluated by first defining a list \(L 1\) as \(\{-2,10,13,11,-20,2\}\) and then calculating \(\boldsymbol{Z}(\mathrm{I}=1,6, \mathrm{~L} 1\) (I))

Note: Although ' \(i\) ' was used as the summation index in each of the cases above, there is nothing special about them. ' \(i\) ' and ' \(j\) ' are simply the letters traditionally used in mathematical problems.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(109,}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& -2,16,16,11,11,-20,2) \\
& \mathrm{Z}(\mathrm{I}=1,5, \mathrm{Li}(\mathrm{I})
\end{aligned}
\]}} \\
\hline & \\
\hline & 12 \\
\hline ETH] & \\
\hline
\end{tabular}

\section*{The 'Matrix' group of functions}

This very extensive group of functions is provided to deal with matrices.
The scope of functions and abilities covered in this group is in fact vastly greater than would be required by the average high school student or teacher. In many cases supplying an explanation in more detail than the manual of what the function is used for would occupy many pages to no real useful gain. Consequently many of the functions will be covered only by the comment "See User's manual".

A detailed set of examples for the more commonly used functions is given in the chapter titled "Using Matrices on the hp 39g+". See page 170.

\section*{COLNORM}

See User's manual

\section*{COND}

> See User's manual

\section*{CROSS([vector],[vector])}

This function finds the cross product of two vectors. Vectors for this function are written as single row matrices.


For example, \(a=(3,4,0)\) or \(\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)\) would be written as \([3,4,0]\).

Note: If you want to use the Matrix Catalog to define your matrices for use with this function then you must use the NNNN key to define them as real vectors rather than as matrices as the CROSS function is one of the few for which this matters.


\section*{DET(matrix)}

This function finds the determinant of a square matrix. See page 174 for an example of its use in finding an inverse matrix.


STM

Eg. If \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right]\) then find \(\operatorname{det}(\mathrm{A})\).
Ans: \(\quad \operatorname{det}(A)=2 \times 5-3 x(-1)\)
\[
=13
\]

See also: INVERSE, RREF

\section*{DOT([vector],[vector])}

This function returns the dot product of two vectors. Vectors for this function are written as single row matrices.
For example, \(a=(3,4)\) or \(\binom{3}{4}\) would be written as \([3,4]\).
See page 175 for a worked example.

\section*{EIGENVAL}

See User's manual

\section*{EIGENVV}

See User's manual

\section*{IDENTMAT(size)}

This function creates an \(n \times n\) square matrix which is an identity matrix. For example, IDENTMAT (4) would produce a \(4 \times 4\) identity matrix for use or storage.

\section*{INVERSE(matrix)}

This function produces the inverse matrix of an \(\mathrm{n} \times \mathrm{n}\) square matrix, where possible. A fully worked example of the use of an inverse matrix to solve a 3 by 3 system of equations is given in the chapter on using matrices on the hp \(39 \mathrm{~g}+\) on page 172 and 288.

An error message is given (see right) when the matrix is singular (det. zero).

Note: Some people write the inverse matrix as a fraction (one over the determinant) multiplied by a matrix, so as to avoid decimals and fractions within the inverse matrix. The hp \(39 \mathrm{~g}+\) does not


 do this. If you want the matrix with the determinant factored out, then evaluate DET(matrix) first, record the fraction and then evaluate DET(matrix) * INVERSE(matrix) to obtain the non-fractional matrix.
i.e. \(\quad A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right] \Rightarrow A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]\)

Remember that the inverse matrix is not just
 the matrix, but the fraction times the matrix.

See also: RREF, DET

\section*{LQ(matrix)}

This function takes an mxn matrix, factors it and returns a list containing three matrices which are (in order):
- an mxn lower trapezoidal matrix
- an nxn orthogonal matrix
- an mxm permutation matrix.

If you want to separate these matrices for later use then you should store them into a list variable.

For example, if M1 was [[1,2,3],[4,5,6],[7,8,9]] then LQ(M1)L1 would store the three resulting matrices into list variable L1. In the HOME view you could now enter L1(1)-M2 to store the first of the result matrices into M2 and so on.

\section*{LSQ}

See User's manual

\section*{LU}

See User's manual

\section*{MAKEMAT}

See User's manual

\section*{QR}

See User's manual

\section*{RANK}

See User's manual

\section*{ROWNORM}

See User's manual

\section*{RREF(matrix)}

This function takes an augmented matrix of size \(n\) by \(n+1\) and transforms it into reduced row echelon form, with the final column containing the solution.
Eg. The system of equations \(\left.\begin{array}{l}x-2 y+3 z=14 \\ 2 x+y-z=-3 \\ 4 x-2 y+2 z=14\end{array}\right\}\)
is written as the augmented matrix \(\left[\begin{array}{ccc:c}1 & -2 & 3 & 14 \\ 2 & 1 & -1 & -3 \\ 4 & -2 & 2 & 14\end{array}\right]\)
which is then stored as a \(3 \times 4\) real matrix M1.

We now use the function RREF to change this to reduced row echelon form and store it as M2.


This gives the final result shown in the matrix M2 on the right, giving a solution of (1, \(-2,3\) ).

The huge advantage of this function is that it allows for inconsistent matrices which can't be
 solved by an inverse matrix.

For example, suppose we use the system of equations below, in which the third equation is a linear combination of the first two but the constant is not consistent with this - ie no solution.
\[
\left\{\begin{aligned}
x+y+z & =5 \\
2 x-y & =-6 \\
3 y+2 z & =13
\end{aligned}\right.
\]

If we solve this in the same way as before, the matrix which results is:


The final line of 0001 indicates no solution.
See also: INVERSE, DET

\section*{SCHUR}

See User's manual

\section*{SIZE}

See User's manual

\section*{SPECNORM}

See User's manual

\section*{SPECRAD}

See User's manual

SVD
See User's manual

\section*{SVL}

\section*{TRACE}

\section*{See User's manual}

\section*{TRN(matrix)}

This function returns the transpose of an \(\mathrm{n} \times \mathrm{m}\) matrix.
For example, if \(M 1=\left[\begin{array}{cc}2 & 3 \\ 1 & -2 \\ 0 & 4\end{array}\right]\) then \(\operatorname{TRN}(\mathrm{M} 1)\) would return \(\left[\begin{array}{ccc}2 & 1 & 0 \\ 3 & -2 & 4\end{array}\right]\).

\section*{The 'Polynomial' group of functions}


This group of functions is provided to manipulate polynomials.
We will use the following function to illustrate some of the tools in the Polynomial group.
\[
f(x)=(x-2)(x+3)(x-1)=x^{3}-7 x+6
\]

\section*{POLYCOEF([root1,root2,..])}


This function returns the coefficients of a polynomial with roots \(x_{1}, x_{2}, x_{3}, \ldots\) The roots must be supplied in vector form means in square brackets.

The function \(f(x)\) above has roots \(2,-3\) and 1 . The screen shot below shows POLYCOEF correctly giving the coefficients as \(1,0,-7\) and 6 for a final polynomial of \(f(x)=x^{3}-7 x+6\).

\section*{POLYEVAL([coeff1,coeff2,...],value)}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

This function evaluates a polynomial with specified coefficients at the point specified. The coefficients must be in square brackets, followed by the value of x (not in brackets). ie. \(f(x)=x^{3}-7 x+6\) has value 12 at \(\mathrm{x}=3\).

Note: If evaluating more than one point it is probably more efficient to enter the function into the SYMB view of the Function aplet. Then either use the NUM view to find the function values required, or simply type F1(3), F1(-2) etc. in the HOME view.

\section*{POLYFORM(expression,var.name)}

This is a very powerful polynomial function. It allows algebraic manipulation and expansion of an expression into a polynomial. The expected parameters for the function are firstly the expression to be expanded, and secondly the variable which is to be the subject of the resulting polynomial. If the expression contains more than one variable then any others are treated as constants.

Eg. 1 Expand \((2 x-3)^{3}(x-1)^{2}\)
Result: \(8 x^{5}-52 x^{4}+134 x^{3}-171 x^{2}+108 x-27\)
The resulting polynomial is shown both as it appears in the HOME view and as it appears after pressing the EH 阿 key. Once it appears in the \(\mathrm{FHD} \mathrm{D}^{2}\) window, of course, it can be scrolled right and left to see the missing terms.

Eg. 2 Expand \((3 a-2 b)^{4}\)
This function contains two variables, \(A\) and \(B\), which must be expanded separately.

The first expansion, treating \(A\) as the variable,
 is done using the expression POLYFORM \(((3 A-2 B) \wedge 4, A)\). As you can see if you examine the view after pressing \(\operatorname{EHD}\), the expansion of the expression in terms of A has been done, but the terms involving B are not fully evaluated.

The solution to this is to use POLYFORM again. Use the MATH menu to fetch the POLYFORM function to the edit line, then move the cursor up to the partially evaluated expression that was the result of the previous POLYFORM. Copy it into the edit line and add a comma, a B and an end bracket. Pressing ENTER will now evaluate the terms involving \(B\).


After pressing ENTER the for the second evaluation, the result is shown right (after pressing


\section*{POLYROOT([coeff1,coeff2,...])}

This function returns the roots of the polynomial whose coefficients are specified. The coefficients must be input as a vector in square brackets.


FOL'ROOT ( \([1,0,-7,6]\) ) \([1,2,-3]\)


Eg. Using our earlier function of \(f(x)=(x-2)(x+3)(x-1)=x^{3}-7 x+6\) we can enter the coefficients as [1,0,-7,6].

As you can see in the screen shot, the roots of \(2,-3\) and 1 have been correctly found.

\section*{The 'Probability' group of functions}


This group of functions is provided to manipulate and evaluate probabilities and probability distribution functions (p.d.f.'s).

\section*{COMB(n,r)}

This function gives the value of \({ }^{n} C_{r}\) using the formula \({ }^{n} C_{r}=\frac{n!}{(n-r)!r!}\).

Eg. Find the probability of choosing 2 men and 3 women for a committee of 5 people from a pool of 6 men and 5 women.
\[
p=\frac{\binom{6}{2}\binom{5}{3}}{\binom{11}{5}}=0.3247
\]


Note: The reason for the single ' \(\operatorname{COMB}(6,2)\) ' above the main calculation is to save time. Rather than using the MATH menu for every entry of the COMB function, you can enter it once and then KDPT it repeatedly, changing the parameters.

\section*{The ! function}

The factorial function finds the number of possible permutations of an entire collection of \(n\) objects.


Eg. Find the number of 'words' that can be formed from the letters FRED.
\[
\text { No. of words }=4!=24
\]

\section*{PERM(n,r)}

This function gives the value of \({ }^{n} P_{r}\) using the formula \({ }^{n} P_{r}=\frac{n!}{(n-r)!}\).


Eg. How many ways can 3 Math, 4 English, and 6 German books be arranged on a shelf if all the books from a subject must be together?
Ans: \(\left({ }^{3} P_{3} \times{ }^{4} P_{4} \times{ }^{6} P_{6}\right) \times 3\) !

\section*{RANDOM}

This function supplies a random 12 digit number between zero and one. If you want a series of random numbers, just keep pressing


Eg. Produce a set of random integers between 5 and 15 inclusive.

Use the expression INT(RANDOM*11)+5 The RANDOM* 11 produces a range from 0 to 10.999999. This is then dropped down to the integer below by the INT function, giving a range of integers \(0,1,2,3, \ldots, 10\). The final adding of 5 gives the correct range.


It is important to realize that these are not truly random numbers. Inside the calculator is a mathematical procedure (an algorithm) which uses a 'seed' number to produce them. Unfortunately, taken straight out of the box, two hp 39g+'s will produce exactly the same sequence of "random" numbers! This can be a problem in that, for example, a class set of calculators doing a simulation of dice would all produce the same numbers.

The simple solution is to seed the random number algorithm with different values for each machine. This is done using the function RANDSEED (...) and, providing each person
 uses a different number, it should only be necessary to do it once (unless the calculator is reset). The simplest method is to use RANDSEED (Time) since the value of Time will be different on each calculator.

\section*{UTPN(mean, variance, value)}

This function, the 'Upper-Tail Probability
 (Normal)', gives the probability that a normal random variable is greater than or equal to the value supplied. Note that the variance must be supplied, NOT the standard deviation.

Eg. 1. Find the probability that a randomly chosen individual is more than 2 meters tall if the population has a mean height
 of 1.87 m and a standard deviation of 10.4 cm
\[
\begin{aligned}
\bar{x}=1.87 m, \sigma & =0.104 m \\
\Rightarrow \sigma^{2} & =0.010816
\end{aligned}
\]

Ans: \(P(\) height \(>2 m)=0.1056\)


Eg. 2. The population of Year 12 Applicable Mathematics students had a mean exam score of \(65 \%\) and a standard deviation of \(14 \%\).
What two scores will cut off the top and bottom \(10 \%\) of students?

Using the Solve aplet (right) we can reverse the normal direction of the UTPN function.

Enter the expression to be solved for into the SYMB view as shown above, then switch to the numeric view. Enter a guess of 0.8 ( \(80 \%\) ) and then press SILTES

The second value can be found by using the symmetry properties of the Normal Distribution, but it is probably just as fast to go back to the SYMB view, change the 0.1 to 0.9 and then re-Solve. Remember that an EDIT
 key is provided in the SYMB view to allow you to change the expression without having to retype it.

Final answer... \(47.06 \%\) and \(82.94 \%\) are the cut-offs.

\section*{Calculator Tip}

The normal order for the arguments in the UTPN function is UTPN(mean, variance, value), giving the upper-tailed probability. However, many textbooks work with the lowertailed probability instead. Fortunately the function can easily be adapted for this.

If you instead enter the function's parameters as UTPN(value, variance, mean), reversing the normal positions of value and mean, then the probability given will be the lower-tailed value. The reason for this lies in the symmetry properties of the normal curve.

\section*{UTPC(degrees, value)}

This is the Upper-Tailed Chi-Squared probability function. It returns the probability that a \(\chi^{2}\) distribution with the supplied number of degrees of freedom is greater than the value supplied. See pages \(150 \& 299\) for an example of this function's use.

\section*{UTPF(numerator,denominator, value)}

This is the Upper-Tailed Snedecor's F probability function. It returns the probability that a Snedecor's F distribution with numerator degrees of freedom (and denominator degrees of freedom in the \(F\) distribution) is greater than the supplied value.

\section*{UTPT(degrees, value)}

This is the Upper-Tailed Student's \(t\) probability function. It returns the probability that a Student's \(t\) distribution with the supplied number of degrees of freedom is greater than the supplied value.

\section*{ApPENDIX A: WORKED EXAMPLES}

The examples which follow are intended to illustrate the ways in which the calculator can be used to help solve some typical problems. In some cases more than one method is shown. Sometimes these problems are quoted elsewhere in the book and repeated here for convenience.

\section*{Finding the intercepts of a quadratic}

Find the x intercepts of the quadratic equation \(g(x)=2 x^{2}+2 x-1\)

\section*{Method 1 - Using the QUAD function in HOME.}

This method is shown right, using the EHDR key in the bottom view. The advantage of doing it this way is that the answer is given in the same form that you would see it if you
 used the Quadratic formula. Just [DPri the result, edit and square the decimal part to find the value of the discriminant. The ' s 1 ' is the calculator's version of the \(\pm\) sign. Just CIPM the result and
 remove the S 1 to obtain the positive solution, replacing the + with a - to obtain the other. This method is only of use if the question said "Show working" because it doesn't give the answer directly. If you need the result in surd form then copy just the decimal part and square it.

\section*{Method 2 - Using the Function aplet.}

Shown right. Enter the function into the SYMB view, use the VIEWS key and choose 'Decimal'. If the axes don't suit, then use the ED 우 options. Now use the FCHI option of Root to find the two roots. One result is shown.


\section*{Method 3 - Using the POL YROOT function}

The advantage of this is that it can be done in the HOME view and is quick and easy. See page 91 for a method of copying the results to a matrix so as to gain easier access to them.


\section*{Finding complex solutions to a complex equation}

Find the roots of the complex equation \(f(z)=z^{2}+z+1\).

\section*{Method 1 - Using the QUAD function}

Since this is a quadratic it can be done with the QUAD formula mentioned in example 1., since it is capable of giving complex results. This is shown right, rounded to 4 dec. pts. It's up to you of course to realize that \((0,1.7321)\) is \(\sqrt{3} i\)
\(\frac{(-1+51 \cdot(0,1.7321))}{2}\)
 but if you don't recognize it then LIPT just that portion and square it. The 'S1' means \(\pm\).

\section*{Method 2 - Using POL YROOT}

An alternative method is to use the POLYROOT function and store the results to a matrix. This offers the advantage of being able to examine the result more easily by EDITIing the matrix, and also of being able to access each root by referring to the matrix elements in a calculation (eg M1(1), M1(2) etc.).


\section*{Finding critical points and graphing a polynomial}

For the function \(f(x)=x^{3}-4 x^{2}+x+6 \ldots\)
(i) find the intercepts.
(ii) find the turning points.
(iii) draw a sketch graph showing this information.
(iv) find the area under the curve between the two turning points.

Step 1. Enter the function into the SYMB view of the Function aplet, so it is available for plotting.

Step 2. Use the POLYROOT function to find the roots. This function is in the MATH menu in the Polynom. group.

The results show that the x intercepts are \((-1,0),(2,0)\) and \((3,0)\). The \(y\) intercept is found by evaluating F1(0) in the HOME view giving the point \((0,6)\).


Step 3. Switching to the PLOT view via VIEWS - Decimal, you will find that the function does not display as well as it could. Since it is the \(y\) axis that is not displaying enough, we will use the ' Y Zoom Out' option in the 이이 menu after first setting the Zoom factors to 2 rather than 4 (which is too drastic).

Now use the FFWI pop-up menu to find
 the Extremum (both left and right).
The snapshot right shows the left-hand turning point of \((0.131,6.065)\).

Step4. Because I know that part (iv) of the question requires me to re-use these extremum values in an integration (which I would like to be as accurate as possible), I am going to 'save' the extremum value just found. I change into the HOME view and store it as shown in memory A.

Note: You MUST store the point of interest before moving the cursor in the PLOT view. As soon as the cursor moves its new position over-writes the extremum value. If you want the \(y\) coordinate, just evaluate \(F(X)\). Now use the FCN - Extremum tool again to find and store the \(x\) coordinate of the second turning point into



Step 5. The PLOT view shows that part of the area we require for part (iv) is negative, so we need to know the \(x\) intercept between the two turning points. Fortunately we know from Step 2 that it is the point \((2,0)\). If we did not know this already, then we could use the [FCH] menu again, retrieving this time from the VAR menu the variable called 'Root' and perhaps storing that into memory C. We will evaluate the integral in the HOME view where you memory B . can use the accurate values you stored in Step 4. It needs to be done in two parts and added (subtracted actually to reverse the sign of the negative part). This is shown right, with the KITM key having been used to add the values.

\section*{Solving simultaneous equations.}

Solve the systems of equations below:
(i) \(\left.\quad \begin{array}{rl}2 x-3 y & =-7 \\ x+4 y & =2\end{array}\right\}\)
(ii) \(-3 x+2 y-z=-10.5\)
\[
x-3 y+z=10.5
\]

\section*{Method 1 - Graphing the lines}

Because the first set of equations is a \(2 \times 2\) system it can be graphed in the Function aplet. To do this it is necessary to re-arrange the functions into the form \(y=\) \(\qquad\) and store them into \(F 1(X)\) and \(F 2(X)\) in the SYMB view of the Function aplet. Switch to the PLOT view and use the FCW Intersection tool to find the point of intersection.


It is worth noting that although the point of intersection is on the screen here, this is not necessary. The FIWM Intersection tool will work even if neither line is visible on the currently set axes.

\section*{Second method - using a matrix}

Step 1. Rewrite
\[
\left.\begin{array}{c}
2 x-3 y=-7 \\
x+4 y=2
\end{array}\right\} \quad \text { as }\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-7 \\
2
\end{array}\right]
\]

This means that \(\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}2 & -3 \\ 1 & 4\end{array}\right]^{-1} \times\left[\begin{array}{c}-7 \\ 2\end{array}\right]\)
Step 2. Switch into the Matrix Catalog (SHIFT MATRIX). Position the highlight on M1 and press E[IIT. Enter the matrix shown right.


Press SHIFT MATRIX to change back to the catalog and create M2 as shown below right. Note that setting [1母 will make it easier to enter M2.


Step 3. Change into the HOME view and enter the calculation \(M 1^{-1 *} \mathrm{M} 2\). The result is the \((x, y)\) coordinate of the solution.

A similar method can be used to solve the second \(3 \times 3\) system of equations.


\section*{Third method - using the 3x3 Solver aplet}

This method uses an aplet which is available from the internet called the "Simult \(3 \times 3\) ".


\section*{Expanding polynomials}

Expand the expressions below.
(i) \((2 x+3)^{4}\)
(ii) \(\quad(3 a-2 b)^{5}\)
(i) Use POLYFORM \(((2 X+3) \wedge 4, X)\) to expand the polynomial. Use the EHDla key to examine the result.

Result:
\(16 x^{4}+96 x^{3}+216 x^{2}+216 x+81\)

(ii) Use POLYFORM \(((3 A-2 B) \wedge 5, B)\) to expand the polynomial as a function of B . Then use the polynomial function again, LIPMing the result from the first expansion and expanding this time as a function of A. The SHD d key can then be used to view it, using the left and right arrows to scroll the screen left and
 right.

Result: \(\quad 243 a^{5}-810 a^{4} b+1080 a^{3} b^{2}-720 a^{2} b^{3}+240 a b^{4}-32 b^{5}\)

\section*{Exponential growth}

A population of bacteria is known to follow a growth pattern governed by the equation \(N=N_{0} e^{k t} \quad ; t \geq 0\). It is observed that at \(\mathrm{t}=3\) hours, there are 100 colonies of bacteria and that at \(\mathrm{t}=10\) hours there are 10,000 colonies.
(i) Find the values of \(N_{0}\) and of \(k\).
(ii) Predict the number of bacteria colonies after 15 hours.
(iii) How long does it take for the number of colonies to double?
(i) Find \(N_{0}\) and \(k\).

Step 1. Start up the Statistics aplet, set it to EDifill and enter the data given. Change to the SYMB SETUP view and specify an Exponential line of best fit for the data.

Step 2. Change to the PLOT SETUP view and adjust it so that it will display the data. (This is not really needed, since the line of best fit is what we need and it will be calculated even if the data doesn't show.) YTick is set to 1000 incidentally.

Now change to the PLOT view and press FIT (if not already set). Wait while the line draws.

Step 3. Change to the SYMB view, move the highlight to the equation of the regression line and press EH Div. Rounded to 4 dec. places, this gives an equation of:
\[
N=13 \cdot 8950 e^{0.6579 t}
\]
(ii) Predict N for \(\mathrm{t}=15\) hours.

Change to the HOME view and use the PREDY function.

Result: 268269 colonies.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline & & 96 \\
\hline \multicolumn{3}{|l|}{PrEDY(15)} \\
\hline & 2682 & 9528 \\
\hline \multicolumn{3}{|l|}{[5ITII} \\
\hline
\end{tabular}
(iii) Find \(t\) so that \(N=\frac{1}{2} N_{0}\).

Step 1. Find the values of \(N_{0}\) and \(k\) and store \(N_{0}\) into memory A and \(k\) into memory K , so that it is un-necessary to re-type them.

See page 145 for instructions on finding the parameters from the exponential fit curve.

Step 2. Switch to the Solve aplet and enter the equation to be solved. Changing into the NUM view, you should find the values of \(A\) and \(K\) already defined, so move the highlight to T and press




 A: 13.8949549437 к: 657681455139
T: 1. E5SEE49848s

EHTEF UhLUE DF PFESS SDLVE
EDT IWFI EILDE.

Result: Doubling time is 1.0536 hours.

\section*{Solution of matrix equations}

Solve for the value of X in \(A(I-2 X)=B\) where \(A=\left(\begin{array}{cc}2 & 3 \\ -1 & 5\end{array}\right), B=\left(\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right)\)
\[
\begin{aligned}
A(1-2 X) & =B \\
1-2 X & =A^{-1} B \\
-2 X & =A^{-1} B-I \\
X & =\frac{-1}{2}\left(A^{-1} B-I\right)
\end{aligned}
\]

Store the values of \(A\) and B into M 1 and M 2 respectively.

Finally use the HOME view to calculate the answer, using the function IDENMAT (2) to produce a \(2 \times 2\) identity matrix, and making sure to store the result into M3.

In this case the result is a horrible decimal. The fractional equivalent can be found by setting the MODES view to Decimal 6 and then re-evaluating, as shown right. From this it can be seen that the common denominator seems to be 26 , so multiplying M3 by 26 will give a
 final result of:
\[
X=\left(\begin{array}{cc}
1 & 22 \\
-5 & 7
\end{array}\right)
\]

\section*{Inconsistent systems of equations}

Solve each of the systems of equations below, where possible, indicating in each case the nature of the system.

(a)
\[
\begin{align*}
2 x-3 z & =-7 \\
x+y+4 z & =15  \tag{b}\\
x+2 y-z & =2
\end{align*}
\]
\[
\begin{aligned}
2 x-3 z & =-7 \\
x+y+4 z & =15 \\
3 x+y+z & =8
\end{aligned}
\]
(c)
\[
2 x-3 z=-7
\]

\section*{Using the RREF function}

In each case the most efficient method is to use the function RREF. The letters RREF stand for Reduced Row Echelon
 Form and the advantage of this function is that it allows the user to deal with matrices which are singular.
(a) Entering the augmented matrix of coefficients into M1 (see above) we then use the RREF function, storing the result into M2.

This result can be examined via the Matrix Catalog. It can be seen that the result is a diagonal of 1 s , with the result given in the final column.

Here: \(x=1, y=2, z=3\)

(b) Since the coefficients are similar, we can edit the augmented matrix in M1 and then re-use the line in the HOME view.

In this case the final line of zeros indicates that the original matrix is singular and that there are an infinite number of valid solutions.
(c) A similar method for the third set of coefficients yields the result shown right. The final line of 0001 indicates that there is no valid solution.


\section*{Finding complex roots}
(i) Find all roots of the complex polynomial \(f(z)=z^{3}+i z^{2}-4 z-4 i\).
(ii) Find the complex roots of \(z^{5}=32\).

The best way to do this is using POLYROOT. I usually ETill the results into a matrix, since the matrices on the hp 39g+ can be complex vectors, not just real matrices.
(i) The coefficients can be entered into POLYROOT in the form a+bi or as ( \(a, b\) ). In this case the roots are integers so there is no need to store it into a matrix.

Coefficients must be in square brackets separated by commas.
(ii) The method is to solve the complex polynomial \(z^{5}-32=0\), setting the other coefficients to zeros. This is shown in the second POLYROOT calculation in the screen shot right.


\([(4,-1),(-2,6),(2,6)]\)

[6.618038986875,-1.962...
 [TITP


\section*{Analyzing vector motion and collisions}

Ship A is currently at position vector \(21 \mathbf{i}+21 \mathbf{j k m}\) and is currently travelling at a velocity of \(-4 \mathbf{i}+6 \mathbf{j} \mathrm{~km} / \mathrm{hr}\). Ship \(B\) is at \(30 \mathbf{j}\) and travelling at \(2 \mathrm{i}+3 \mathrm{jkm} / \mathrm{hr}\). If the ships continue on their present courses, show that they will not collide and find the distance between them at the time of their closest approach.

Firstly enter the equations for the ships' paths into the Parametric aplet using the first equation pair for ship \(A\) and the second for ship B.

Making a guess at the ships' behavior and position, I will set up the axes as shown on the right. I am assuming that the collision will occur in the first 6 seconds and in the axes range chosen. This can always be adjusted if my guess is wrong. The reason for choosing 15 on the YRng is to ensure that the \(x\) axis is visible on the screen. Notice in the second screen that Simult: must be checked if the plot is to be a good illustration of the ship's movements.

If you've done this correctly then you will see the ship's movements on the plot view. Careful examination of the paths of the ships as they appear on the screen will show visibly that they do not collide. The graph is shown on the right just before closest approach. However we need to verify this.

The formula for the distance between the ships is \(d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}\) and this can now be entered into the Function aplet as shown right. With an equation this complex it is probably worth checking with the EHID key that you have typed it correctly. Notice that the active variable in Function must be X not the T used in Parametric.


I want to graph this function for the first six seconds but I am not sure what y scale to use so I will set XRng to be 0 to 6 in the PLOT SETUP view and then choose VIEWS - Auto Scale. The result is shown right.


Using FTH - Extremum, I find that the time of closest approach is at \(t=3.4\) hours ( \(3: 24 \mathrm{pm}\) ) with a separation at that time of \(d=1.3416\) km . The y axis has been adjusted slightly to make the x axis visible.


\section*{Circular Motion and the Dot Product}

A particle's position at time \(t\) seconds is given by \(r=5 \sin \theta i-5 \cos \theta j\). Draw a sketch of its path for the first 6 seconds of movement. Show algebraically that its path is circular.

The first step is to graph the particle's path. We go into the Parametric aplet and enter the rule into the first equation \(\mathrm{X} 1, \mathrm{Y} 1\).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{- \(\times 1\) (T) \(=5\) SIHCT)} \\
\hline F'1(T)=-5* & \\
\hline X2CT)= & \\
\hline YC (T)= & \\
\hline KSCT) \(=\) & - \\
\hline ENIT FCHE T &  \\
\hline
\end{tabular}

After setting TRng to 0 to 6 and then using VIEWS - Auto Scale we get a result which is does not look like a circle, but this may be due to distortion through not using a 'square' screen.

If we inspect the PLOT SETUP view, we can see that the settings are nearly double those of the default 'square' screen of -6.5 to 6.5 and -3.1 to 3.2 In the PLOT SETUP view, press SHIFT CLEAR to set everything back to default, then double each setting for the \(x\) and \(y\) axes and set TRng back to 0 to 6 . Pressing PLOT again will make it clear visually that this is a circle and we can copy this diagram onto our test paper as the required graph. Note the gap at the bottom because the TRng stops at 6 instead of \(2 \pi\).


The simplest way to show that the motion is circular is to show that the dot product of the velocity and acceleration vectors is constantly zero for all theta. This should be done algebraically, but just for fun we'll see if we can do it with the calculator too.

Use X2 \& Y2 to hold the velocity and X3 \& Y3 to hold the acceleration, pressing ETFiL after each one to perform the differentiation.

Now we go to the Function aplet and enter the formula for the required dot product as X2 (X)* \({ }^{*} 3(X)+Y 2(X){ }^{*} Y 3(X)\).

If we now switch to the NUM view, we can see that this function is evaluating to zero for \(t=0\), \(1,2,3 \ldots\). Of course this is not the same as a proper algebraic proof but you wouldn't want the calculator to do all the work would you?


EITT FCHE \(X\) E SHDEN ENGL


\section*{Inference testing using the Chi' test}

A teacher wishes to decide, at the \(5 \%\) level of significance, whether the performance in a problem solving test is independent of the students' year at school. The teacher selected 120 students, 40 from each of Years 8, 9 \& 10, and graded their performance
\begin{tabular}{|r|c|c|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{2}{c|}{\begin{tabular}{c} 
Grade \\
awarded
\end{tabular}} & \\
\hline Year & A & B & Total \\
\hline 8 & 22 & 18 & 40 \\
\hline 9 & 26 & 14 & 40 \\
\hline 10 & 27 & 13 & 40 \\
\hline Total & 75 & 45 & 120 \\
\cline { 2 - 3 } & & &
\end{tabular} in a test as either \(A\) or \(B\).

The table above right shows the results.
The hypotheses being tested are:
\(\mathrm{H}_{0}\) : There is no relationship between grades awarded and years at school. They are independent.
\(\mathrm{H}_{\mathrm{A}}\) : There is a relationship.

If \(\mathrm{H}_{0}\) is true then the expected frequencies should be those in the table on the right.

Enter the observed and expected frequencies into columns C1 and C2 of the Statistics aplet.
\begin{tabular}{|r|c|c|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{2}{c}{\begin{tabular}{c} 
Grade \\
awarded
\end{tabular}} & \multicolumn{1}{c}{} \\
\hline Year & A & B & Total \\
\hline 8 & 25 & 15 & 40 \\
\hline 9 & 25 & 15 & 40 \\
\hline 10 & 25 & 15 & 40 \\
\hline Total & 75 & 45 & 120 \\
\hline
\end{tabular}




6. 36, . \(14,-16,-6,6,666\)


Changing into the Solve aplet we can enter a formula which will allow us to calculate values from the Chi \({ }^{2}\) distribution using the UTPC function.

With a \(3 \times 2\) contingency table the number of degrees of freedom are 2. To find the critical \(\chi_{0.05}^{2}\) value, we enter values of 2 for \(D\) (the degrees of freedom) and 0.05 (the probability) and then move the highlight to V (the value) and press 睛盢. As it turns out, the required
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*sis s SOLVE SMWEDLIG WEW \\
VE1: ITFIC \((\mathrm{D}, \mathrm{y})=\mathrm{F}\)
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{EEH} \\
\hline E3: & \\
\hline E4: & \\
\hline E5: & - \\
\hline EITT FCHE \(=\) & |SHDAI EMFL \\
\hline
\end{tabular}

EDIT \(\mid\) FCHR \(=\) |EHINI ENFL
 critical value is 5.99 and so we would accept the null hypothesis and conclude no relationship.

\section*{Appendix B: TEACHING CALCULUS WITH AN HP 39G+}

There are many ways that the teaching of functions and calculus concepts can be enhanced with the aid of an hp 39g+ graphical calculator. Some of them are listed below:

\section*{Investigating \(y=x^{n}\) for \(\mathbf{n}\) an integer}

This can be done most economically by setting an investigation, perhaps for homework.


Save a copy of the Function aplet under the name of "X to the N". Saving the aplet will allow you to send it to your students' calculators.


Into this aplet, enter the functions shown and set the axes as shown. The choice of x axis means that each pixel is 0.02 apart.


This aplet can now be sent to each student's calculator at the end of a lesson using the infra-red link.
Accompanying questions should address the issues
 below, and students should be required to either hand in a short written response, or contribute to a verbal discussion the next day.
(i) All the graphs have two points in common. What are they and why are they common?
(ii) Why does an increasing value of \(n\) mean a lower value of \(f(x)=x^{n}\) between 0 and 1 , while it means a higher value for \(x>1\) ?
(iii) What happens for \(\mathrm{x}<0\) ? (The scale will need to be changed in the PLOT SETUP view.)
(iv) What do the graphs of \(y=x^{n}\) look like for negative integer values of \(n\) ?

\section*{Domains and Composite Functions}

There are a number of ways that the calculator can help with this. Examples are given below but others will no doubt occur to experienced teachers.
(i) Rational functions can be investigated using the NUM view. For example, enter the functions \(F 1(X)=X+2\) and \(F 2(X)=\left(X^{2}-4\right) /(X-2)\). Discussion will elicit the fact that they are 'identical'
 algebraically but what then about the point \(X=2\) in the NUM view (see right)? Use this in discussion to introduce the convention of graphing with a 'hole'.

You can also have a great deal of fun with the class by telling them to un \(\mathrm{FCHE} F 1(X)\) and then to zoom in repeatedly on \(X=2\) in the PLOT view in an effort to "find the hole". They won't of course, but you can laugh watching them and then discuss why they didn't - a good way to introduce the idea of limits!


However - there is a trick to this! If you use the default axes of -6.5 to 6.5 then there will be a hole (see right) because \(\mathrm{x}=2\) falls on a pixel point and so, since it is undefined, the calculator leaves it out.

For this to work you need to sabotage their efforts in
 advance via a scale which does not have \(x=2\) on a pixel. Starting with a scale like this ensures that subsequent box zooms won't produce the "hole". A good scale is -1 to 6 on both axes and
 you can rationalize the choice by telling them that it "focuses well on the point we're interested in". They may still sabotage this by choosing their own axes when zooming.
(ii) When discussing the concept of a domain, the NUM view can be very useful in developing this (see right).

(iii) Composite functions can be introduced directly in the SYMB view. For example, enter \(F 1(X)=X^{2}-X\) and \(\mathrm{F} 2(\mathrm{X})=\mathrm{F} 1(\mathrm{X}+3)\). Move the highlight to \(\mathrm{F} 2(\mathrm{X})\) and press the ETHiL button. If desirable, you can further simplify using POLYFORM. With the highlight on \(\mathrm{F} 2(\mathrm{X})\), press EDIT. Move the highlight to the start of the expression and use the MATH button to enter "POLYFORM(". Now
 move to the end and add ", X )" to the expression and press OK . Pressing EIFiL again now will give the result shown right.
(iv) Domains of composite functions can be explored in the NUM view. In the SYMB view, enter the functions
 shown right, un FHE ing the first two non-composite functions. In the NUM view shown, I have used the NUM SETUP view to set the scale to start at -1 and increase in steps of 0.25 . Obviously discussion will now center on why \(f(x)=\sqrt{x^{2}}\) is not the same as \(f(x)=x\), and why \(f_{1}\left(f_{2}(x)\right)\) is not the same as \(f_{2}\left(f_{1}(x)\right)\) for \(\mathrm{x}<0\).

\section*{Gradient at a Point}

This is best introduced using an aplet called "Chords" downloaded from The HP HOME View web site (at http://www.hphomeview.com), but you can also use the Function aplet.

In the Function aplet, enter the function being studied into F1(X). To examine the gradient at \(x=3\), store 3 into \(A\) in the HOME view as shown right, then return to the SYMB view and enter the expression shown right into F2(X).


Change to the NUM SETUP view and change the NumType to "Build Your Own". You can now enter successively smaller values for X in the NUM view, since X is taking the role of \(h\) in the expression \(f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\).

To investigate the gradient at a different point, change back to the HOME view, enter a new value into \(A\) and then return to the NUM view.

The disadvantage of the previous method is that it is not very visual. An alternative is to use the "Chords" aplet.

In this aplet, a menu is provided via the VIEWS menu to allow students to choose from a list of predefined functions or enter their own. Once
 the function has been graphed, the 'Show slopes' option will display an animated series of chords of diminishing length, with the gradient displayed at the top of the screen. As the chord shortens the student can see how
 this affects the approximation to the gradient at the point chosen.

\section*{Gradient Function}

Once the concept of gradient at a point has been established the next step is to develop the idea of a gradient function. This can be done using an aplet downloaded from The HP HOME View web site called

"Tangent Lines". This aplet will add a moveable tangent line to a graph, allowing the user to move it along the curve with the gradient displayed at the top left of the screen.

There are two worksheets included in the documentation which is bundled with this aplet which will take the student through the process of developing a gradient function.

If it is not desirable to use this aplet then the Statistics aplet can be used to help with the process of finding gradient functions once tabular data has been collected giving \(x\) and \(\operatorname{grad}(x)\) values. If the student enters the data into C1 and C2, they can then set to Elifal, plot the data and make a guess as to the appropriate function and then use the curve fitting facilities to find an equation.

Curves of the form \(y=m x+b, y=a x^{2}+b x+c, y=a x^{3}+b x^{2}+c x+d\) and \(y=a x^{b}\) can be fitted using the Statistics aplet and this should be enough for the students to deduce the rule \(\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}\) for themselves. It is advisable to ensure that the students are familiar with the process of using the Statistics aplet to find equations before commencing, otherwise the two concepts may interfere.

\section*{The Chain Rule}

If desirable, an aplet is available from The HP


HOME View web site (at http://www.hphomeview.com), called "Chain Rule", which will encourage the student to deduce the Chain Rule for themselves.

It is pre-loaded with five sets of functions, of increasing complexity, the first three of which are shown right. The functions are loaded into F1, F3, F5, F7 and F9, while the functions F2, F4, F6, F8 and F0 contain an expression which, when ETVL is pressed, will differentiate the function above. Through the worksheet which is bundled with the aplet, the student is directed to record the functions and their derivatives and to look for patterns which will allow them to deduce a rule.

\section*{Optimization}

A method which I find to be efficient in introducing the idea of optimization is via the maximization of the volume of an open-topped box.

If we start with a sheet of card which is 15 cm by 11 cm then we can form
 a box by removing squares from the corners and folding up the sides. I find that it is quite helpful for the students to actually make such a box, choosing for themselves what size square to cut out. They can then explore, using the Function aplet, what cut-out size will produce the maximum volume.

As can be seen above right, the width, length and height can be entered into F1, F2 and F3 as functions of the cut-out size \(X\). The volume can then be entered into F4 as F1*F2*F3 and this function can then be plotted and the maximum found either through successive approximations in the NUM view or by using the FCN tools in the PLOT view.

\section*{Area Under Curves}

This topic is most easily handled using an aplet from The HP HOME View web site (at http://www.hphomeview.com). This aplet, called "Curve Areas" will draw rectangles either over or under a curve or use trapezoids. A number of curves are supplied preset but the user can also enter their own. The user can nominate the interval width and the number of
 rectangles.

Most importantly, a worksheet is bundled with the aplet which will lead the student through the process of deducing an area function and hence to the anti-differentiation of \(x^{n}\).

\section*{Fields of Slopes and Curve Families}

One of the concepts which students find quite difficult to come to grips with is that of sketching a field of slopes from a derivative function and, from this, sketching a family of curves. An aplet from The HP HOME View web site (at http://www.hphomeview.com), called "Slope Fields", will assist with this process.

In this aplet the user enters the derivative function into \(\mathrm{F} 1(\mathrm{X})\) and then uses the VIEWS menu to produce a field of slopes. A cross-hair is projected onto the field which the user can move around. When the user presses ENTER, a curve is drawn, starting at that point and projecting to the right and then the left, and
 following the field of slopes. Repetition of this will illustrate the fact that there are a family of curves, separated by a constant, which all fit the 'description' of the function stored in F1(X).

\section*{Inequalities}

The topic of inequalities is one that is sometimes included in calculus courses, particularly during the study of domains and this is often extended to graphing intersecting regions such as \(\left\{(x, y): y \leq 0.5 x+1 \cap y \geq x^{2}-1\right\}\).

Although the hp 39g+ does not have the in-built ability to plot inequalities, the process is easily handled using an aplet from The HP HOME View web site
 (at http://www.hphomeview.com) called "Inequations". This allows the user to plot individual or overlapping inequalities as shown right. It will not handle dotted functions of the form \(y<f(x)\).

\section*{Rectilinear Motion}

A topic which is commonly taught as part of any calculus course is rectilinear motion. This can be enhanced by using the Parametric aplet to graphically illustrate the motion of a particle. If this is set up properly then it can be a very helpful teaching aid, as the graph will slow down and speed up as it appears, illustrating the velocity and acceleration of the particle.

See page 104 for a fully worked example of how the Parametric aplet can be used to produce motion graphs of the form shown right. The graph needs to be seen as
 it is being drawn to appreciate how the particle slows down and speeds up as it passes the turning points. Try it and see.

\section*{Limits}

For information on evaluation of limits on the hp \(39 \mathrm{~g}+\) and, more importantly, the pitfalls that lie in wait for the unwary, please read the information in the chapter "Tips \& Tricks - Function" on page 88.

\section*{Piecewise Defined Functions}

Piecewise defined functions can be graphed easily on the hp 39g+ by breaking them up into their components.

For example: \(\quad f(x)= \begin{cases}\sin (x) & ; x<-2 \\ x+2 & ;-2 \leq x \leq 1 \\ (x-2)^{2}-1 & ; x>1\end{cases}\)
Using the Function aplet, we enter three separate component functions. You can obtain the inequality signs from the CHARS menu.
\[
\begin{aligned}
& F 1(X)=\operatorname{SIN}(X) /(X<-2) \\
& F 2(X)=(X+2) /(-2 \leq X \text { AND } X \leq 1) \\
& F 3(X)=\left((X-2)^{2}-1\right) /(X>1)
\end{aligned}
\]


The calculator evaluates the domain as either true (1) or false (0) for each value of \(x\). When it is zero (outside the domain) then dividing by this value causes the function to become undefined and consequently not be graphed. Inside the domain it has no effect.

Note: The word 'AND' is available from the keyboard above the (-) sign.

\section*{Sequences and Series}

Through the Sequence aplet the hp \(39 \mathrm{~g}+\) provides very flexible tools for the investigation of sequences. These can easily be adapted to investigate series as well.

Information and worked examples of using the hp \(39 \mathrm{~g}+\) for evaluation of sequences and series can be found in the chapter "Tips \& Tricks Sequences and Series" on page 110.

Note: One of the common errors that students make in the Solve aplet is to try to solve for solutions which do not exist. For example, a student will try to solve for \(N\) in \(T=A^{*} R^{\wedge}(N-1)\) with \(A=50, R=0.75\) and \(T=-2\). The result will be firstly that the calculator will seem to freeze while it tries to find a solution which can only be approached asymptotically.

Finally the calculator will give the result as shown right. The problem is that students will misinterpret it as being \(\mathrm{N}=10\), when in fact it is simply that the calculator has gone as far along the positive \(x\) axis as possible and stopped at MAXREAL of \(1 \times 10^{500}\) (see second screen shot). It is recommended that the teacher should deliberately provoke this error and follow with class discussion.

Students should also be encouraged to press the LH button after finding a solution since a case like this will give 'Extremum' whereas a correct solution will result in
 either 'Zero' or 'Sign Reversal'. See the manual for more information.

\section*{Transformations of Graphs}

This topic can be handled in a number of ways. One of these is to use the Function aplet without enhancement.

Enter the basic function into \(\mathrm{F} 1(\mathrm{X})\).
For example, you might enter \(F 1(X)=X^{2}\). You can then enter transformations into the other
 functions. Some examples, together with the resulting graphs are shown right.

This process will also work with piecewise defined functions which are often the type that are used in examination questions.

There are also two aplets which can aid greatly in this process called "Quad Explorer" and "Trig Explorer" and are built into the hp \(39 \mathrm{~g}+\). Both of these aplets
 allow the student to explore the effect of changing parameters on the shape of the graph, one using a quadratic and the other with the sine and cosine curves. Students can choose to manipulate the graph and see the effect on the parameters, or to manipulate the parameters and see the effect on the graph. In Quad Explorer there is even a "test yourself" facility provided which will present the student with examples of quadratics for which they must provide an equation, with visual feedback on incorrect guesses. Highly recommended. See pages 164-167.

\section*{APPENDIX C：THE HP 40G \＆ITS CAS}

\section*{Introduction}

This appendix is intended to give a useful introduction and over view to the user who is new to an hp 40 g ．It is not intended to fully cover the topic，nor is it intended to serve as a reference text for the advanced user．For those needing a far more extensive coverage than is available here，I can highly recommend the incredibly detailed text＂Computer Algebra and Mathematics with the hp 40g，Version 1．0＂by Renée de Graeve，Lecturer at the University of Grenoble I and founder of the Grenoble IREM．It contains a complete reference of the functions for symbolic calculation，and also demonstrates， using many examples，how to take smart advantage of the calculating power of the hp 40 g ．This can be found at Hewlett Packard＇s web site （http：／／www．hp．com／calculators）or on the Help page of The HP HOME view （http：／／www．hphomeview．com）．

\section*{What is a CAS？}

Although you may not have thought about it consciously，you are probably aware that most calculators do not operate with algebra in the same way that a human does．Generally speaking solutions on computers and calculators are found using numeric means．This is often done by using successive approximations，each one coming closer and closer to the final answer．

You can see this process at work quite easily using the Solve aplet．All you need to do is enter an equation to solve which is complex enough to require more than a few seconds to solve．If you do this then you can watch the calculator work．

In the Solve aplet，enter the equation
\(\boldsymbol{r}\left(0, X, A^{2}, X\right)=1000\) as shown right． This is equivalent to solving for \(a\) in the equation： \(\int_{0}^{x} a^{2} d x=1000\) ．


Change into the NUM view，and press 组畳 on \(X\) ．As soon as the hour glass symbol appears， press the 国以䀦 button again．You may need to press it more than once before the calculator takes notice，but eventually you should see a view similar to the one right．


The two values at the top of the screen represent the calculator's successive approximations to the true solution. The chances are that one will have a ' + ' symbol to the left of it, while the other has a ' - '. This is telling you that the ' + ' value is greater than required, while the '-' value is smaller. As you watch you should see the two values converge to the true answer.

But is it? The true answer is actually \(\sqrt[3]{3000}\), as is shown right. Unless you realized that the value supplied was a cube root it is unlikely that you would get this exact solution.

Algebraically, the solution is shown to the right.

On most calculators there is no way to obtain this exact answer because the calculator doesn't use algebra.


\[
\int_{0}^{a} x^{2} d x=1000
\]
\[
\left[\frac{x^{3}}{3}\right]_{0}^{a}=1000
\]
\[
\frac{a^{3}}{3}=1000
\]


However, the CAS or Computer Algebra System on the hp 40g does use algebra! As you can see in the screen shots to the right, the CAS on the hp 40 g is perfectly capable of giving you the algebraically correct answer, and it does it by following the same rules that you do.

The CAS on the hp 40 g is based on a program called Erable, originally written by Bernard Parisse for the HP49G, which was then adapted for the hp 40 g . It is an amazingly powerful CAS which will let you
 perform virtually any mathematical manipulation you might need.

For an example of the fundamental difference between working in the CAS, with its exact mode \& infinite precision, and working in the normal HOME view, in approximate mode with \(10^{-12}\) precision, you need only consider the two contrasting results of ASIN ( 1 ) and \(\frac{1}{9} \times 9\) shown to the right.


\section*{What is the difference between the hp 39g, hp 40 g \& \(\mathrm{hp} 39 \mathrm{~g}+\) ?}

At the time that the hp 39 g was designed, as an upgrade from the original hp 38 g , there were two competing sets of requirements. The European market wanted a calculator which had a CAS system but they were highly distrustful of the infra-red communication which was standard on the hp 38 g , feeling that it might allow cheating in examinations. The US and Australian markets, on the other hand, wanted the infra-red communications but their educational systems were not yet prepared to allow the power of a CAS into their classrooms, feeling that it did too much of the students' work.

The solution adopted was to use the same chip for two calculators, the hp 40 g and the hp 39 g . These two models have, respectively, infra-red but no CAS and CAS but no infra-red. They are otherwise identical except for the label below the screen. The calculator's chip is able to detect which model it is in and activate or de-activate the CAS accordingly.

The hp 39g+, released in 2004, is an upgraded model of the hp 39g, the differences being vastly greater speed and the extra Finance aplet.

If you own an hp 39g and you are wondering if you can fool it into believing that it is an hp 40 g and thereby activate the CAS, then please don't try it. If you disable the infra-red by, for example, cutting the internal wires then you won't have an hp 40 g - you will simply have a crippled hp 39g. Nor is it possible to activate the CAS by means of a special program. It is possible to partially activate it but the result will be crippled to varying degrees and will not work properly, possibly even giving incorrect answers. In addition to this, any education system will very probably regard this as a serious instance of cheating if you use it in an examination and penalize you accordingly.

If you own an hp 39g+ then the question does not even arise because the code for the CAS was left out of the chip when it was upgraded to become the hp 39g+.

\section*{Using the CAS}

The first step is to activate the CAS. This is done from the HOME view by pressing screen key 6 (SK6), labeled CRS.


When you do, you will see an empty screen with a cursor in the center and an extensive menu system at the bottom of the screen.


From the HOME screen, pressing SHIFT CRS will instead display the screen on the right. This is the CAS MODES screen. More information on this is given on page 329. This screen can be accessed within the CAS by pressing SHIFT SYMB.


\section*{Entering and editing an expression}

When entering an expression the main point to remember is that evaluations and appending of operations are always done to the currently highlighted element. This is most easily seen with an example.

In the HOME view press CR\$ and then follow the sequence of keys below:
(i) Press \(2 X T \theta+3 \quad X^{y} 4\)

In this case you will notice that the power of 4 was placed so that it applied only to the last character typed; the 3.

(ii) Press up arrow twice. Then press ENTER.

Notice that pressing up arrow caused more and more of the expression to be highlighted. Pressing ENTER evaluated the currently highlighted expression of \(3^{\wedge} 4\) to be 81 .

(iii) Press left arrow once then down arrow once. Press \(\widehat{X^{y}} 3\), then press up arrow three times \& finally press \(\bar{X}^{y} 2\). (DO NOT use the \(X^{2}\) button for this.)
\[
\left(z^{3} x\right)^{24}+81
\]


Notice that in each case the power was applied to the currently highlighted element of the expression. Brackets are automatically added as required.

Notice also the movement of the highlight. If you regard the original expression of \(2 \mathrm{X}+81\) as a tree of operations as shown right then it may make more sense. When you finished step 2 the highlight was on C , the node containing 81.


Pressing down arrow at that point moved down the tree. The default is to move to the left-most node \(D\). This meant that the 2 was highlighted and so when you pressed \(\mathbb{X}^{y} 3\) it was the expression that was cubed. At that point the tree now appears as shown right with the CAS in 'typing/editing mode' on node G.


Pressing up arrow three times placed the highlight successively on nodes G, then \(D\), then \(B\). When \(X^{y} 2\) was pressed it squared the entire expression defined
Pressing left arrow moved horizontally from node \(C\) to node \(B\). The highlight at that point encompasses everything at or below node \(B\). In this case this is the expression ' 2 * X '.

A
 by node \(B\) which was ' \(2{ }^{3} X\) '. This necessitated brackets and so they were automatically added.

The result was the tree shown to the right, with nodes \(P\) and \(Q\) added below node A. You may notice that it is heavily canted to the left and this tends to be fairly typical of the way we generally write expressions.

(iv) Press up arrow three times and then divide by 5 .

This moves the highlight up to node A, high-


Toll lighting the entire expression. Dividing by 5 therefore applies to the entire expression, with the result shown right. The new tree is shown below with nodes R and S added above A .

Although it is not strictly necessary for you to understand or use this concept of a tree of operations you will find that it will help you to follow why the highlight behaves as it does as it moves around. A final example may help with the visualization.
(v) After typing the 5, press up arrow once to highlight that node S. If you now press left arrow you will find that the highlight will jump horizontally to node A , highlighting the entire numerator. Pressing down arrow four times moves down through the tree from \(A\) to \(P\) to \(B\) to \(D\) to \(F\).

To access and change the power of 2 ,
 press up arrow twice to move up to node \(B\), then press right arrow to move from node B to node O. If you now press + and 3 you will find that this is added to the power, with brackets applied as required. Try redrawing the tree as it would now appear. Node O will now be the addition operation with two new nodes below.
(vi) Finally, exit the CAS by pressing ON. Don't press the HOME button as the CAS has its own HOME view which behaves differently and is covered on page 317.

Note: There can be a problem with the way that the \(\mathbb{X}^{2}\) button is handled. Try going back through the same exercise but pressing the \(\mathbb{X}^{2}\) button at step 3. You will find that this makes it impossible to access and edit the power because the \(\mathbb{X}^{2}\) operation is stored differently.

\section*{In-line editing mode}

If you find that you are not able to access part of an expression, or if you have entered an operation at the wrong level then you can highlight and edit an expression 'in-line' as if you were entering it in the calculator's normal HOME view.


For example, highlight part of an expression as shown right. Now press SK1 (TilL) and choose 'Edit expr.' from the menu. You can now perform any editing you require and the result will be inserted into the full expression at that point.


\section*{Erasing, copying, cutting and pasting}

When you press the DEL button in the CAS editor the effect is basically to remove nodes of the tree. The first node deleted is the one furthest right in the currently highlighted section.

For example, if the highlight was as shown in the screen above, then the current focus would be on node \(B\) in the tree shown right. Successively pressing DEL would begin at node E, deleting first the node's contents then the operation (multiply) which connected it to the tree. Try it and see.

This process is best seen with experimentation. My experience has been that if you are simply wishing to edit a small portion of the expression then the best method may be to use the 'Edit Expr.' command in the TWL menu. The tree
 structure used by the editor means that although it is usually very easy to add new operations and expressions within an existing one, it can sometimes be frustratingly difficult.

If you want to delete the entire expression then the simplest method is to press ON and exit the CAS and then re-enter it with a blank screen.
Alternatively you can highlight part or all of the expression and then press SHIFT ALPHA CLEAR. The highlighted section will be cleared.

Cutting and pasting of all or part of an expression can be easily done using the TIIL menu. This provides access to commands of Cut, Copy and Paste which behave in exactly the same manner as they do in any word processor.


Simply highlight the relevant portion of the expression first and then either cut or copy it. Then move to the new position and paste it. As you can imagine from the tree structure the results of a paste can sometimes be unexpected but generally they will be satisfactory.

\section*{Cursor mode}

Cursor mode can be used to select portions of an expression by drawing a box around it.
From the TIUL menu, select 'Cursor mode'. Use the arrow keys to move a cursor around on the screen. As you do so it places a box
 around different parts of the expression that are selectable. Press ENTER to select that section.

\section*{The CAS HOME History}

The CAS has its own history which is essentially similar in its behavior to the normal HOME History. If you press HOME while in the CAS then you will see something similar to the view on the right, with all previous calculations and results recorded. As with the normal
 History it is worth deleting the contents regularly by pressing CLEWI if the memory is not to be gradually used up.

To re-use an expression just highlight it and press EKHD. Pressing CDP will copy the expression to the clipboard so that you can then Paste it using the TWL menu. Pressing 피표 will present the expression in scrollable form.

\section*{The PUSH and POP commands}

Occasionally it is desirable to transfer results from the normal HOME view to the CAS screen or vice versa. This is done using the PUSH and POP commands.

Suppose we have just expanded \((2 x+3)^{4}\) in the CAS, as shown right. If we press ON to exit the CAS and then type POP in the HOME view then the result will be retrieved to the HOME screen as shown.


In this case we might wish to also paste the result into the Function aplet. This can be done by using KIPM to retrieve the expression, enclosing it in single quotes from the CHARS view and then storing it ( \((\mathbf{F})\) into F ( X ) or whichever is desired.

POF

. \(\times \mathrm{K}^{\wedge} 2+216 \times \mathrm{X}+81^{1} \mathrm{FF1(K)}\)
STIT | CDPTEHIN CHE

The reverse process is also possible using PUSH but it is more limited in that you must use the symbolic variable S1. When you then press CAS you will find that seemingly there has been no result. However, pressing HOME you will find that the expression has been added to the tail of the CAS History and can now be EKHI'd to the editing screen for use.


\section*{Pasting to an aplet}

As mentioned above, one method of transferring CAS results to a normal aplet such as Function is to use the POP command. However, for graphing results, there is an even easier method - simply press PLOT.

Suppose that we have a result in the CAS editor as shown right.

Pressing the PLOT button will result in the menu shown in the second screen.


```

P:ヨr`ヨmetrig
Pol:ar

```
 the Function aplet.

\section*{Evaluating algebraic expressions}

When an expression is highlighted, pressing ENTER will cause it to be algebraically evaluated and any functions to be applied accordingly. For example, if you highlight \((2 x+3)^{\wedge} 3\) as shown right then pressing ENTER will give the result shown.


Further examples are shown below. In each case it is only the highlighted expression which is evaluated. Depending on the settings of CAS MODES there may or may not be intermediate steps displayed between those shown.


Notice the lack of a ' \(+c\) ' indefinite constant in the integration result. Here, this is because we are using the definite integral (see page 81 and the page following). A better alternative is to use the INTVX function as shown below, even though it still does not add the ' +c '. See the page after this for information on using functions in the CAS.


\section*{Calculator Tip}

The result of the 40! example above extends off the edge of the screen and pressing will not scroll it. If you press the VIEWS button, then you will find that it can now be scrolled and the entire value seen - all 48 digits of it.

\section*{Using functions in the CAS}

The behavior of the MATH menu is somewhat similar in the CAS except that it gives access to a host of new functions available primarily in the CAS. These functions will only be available on the hp 40 g , not on the \(\mathrm{hp} 39 \mathrm{~g}+\).

There are two ways that functions can be used. The first is to use them as the expression is entered. In this method the order is to choose the function and then to fill in the parameters required. The second is to apply a function to all or part of an expression that has resulted from a previous calculation.

\section*{E.g. 1 Using LIMIT}

Find \(\lim _{x \rightarrow 7} \frac{x^{2}-2 x-35}{x-7}\).
The sequence of keys for this is...
DIFF scroll to LIMIT ENTER
 / XTO - 7 - 7 』 ENTER

Find \(\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}\).
The sequence of keys for this is...

\section*{DIFF scroll to LIMIT ENTER}
\(1 / \mathrm{XT} \mathrm{\theta}-2>2+\) MATH scroll to QUOTE ENTER
- \(\boldsymbol{\Delta}\) - ENTER

ENTER
Note: The limit approached from below would




 be entered as 2 - QUOTE (0).

\section*{E.g. 2 Factorizing expressions}

If you highlight an expression such as \((2 x+3)^{4}\) and press ENTER then the CAS will expand the bracket. Since the result extends beyond the screen we will scroll through it using the arrow keys. The results can be factorized again using the COLLECT function.

In this example we will also illustrate the use of the CAS History to fetch a previous calculation.

The sequence of keys for this is..
(i) Expansion...

2
\(X^{y}\)
\(X T \theta\)
4
\(\Delta\)
(ii) Examination...

(iii) Retrieving...


\section*{CRS HOME EKHD}

Any recorded previous calculation or result can be retrieved in this way, just as it can in the normal HOME history.
(iv) Factorization...

While the required expression is highlighted, fetch the COLLECT function from the MLGE menu by pressing SK2.


Note: Remember that the extent of the highlight plays a very important role.
- Firstly, the brackets for the inserted COLLECT function will enclose whatever portion of the expression is highlighted. This allows partial factorizations. In this case the entire expression must be highlighted before COLLECT is inserted.
- Secondly, when ENTER is pressed the evaluation is done on whatever is highlighted. It is necessary for the entire expression, including COLLECT, to be highlighted if it is to be evaluated.

\section*{E.g. 3 Solving equations}

Solve the equation \(x^{4}-1=3\), giving i) real solutions and ii) complex solutions.
From any of the screen menus, access the CFG menu (see page 329) and ensure that Rea 1 mode is selected, as shown right.

Now use the SOLVEVX function, typing:

The SOLVEVX function assumes that the active
variable is being used. The default active variable is \(X\) and if \(n o=s i g n\) is included then the expression is assumed to be equal to zero. The related function of SOLVE has a second parameter which allows
\([\%=\sqrt{2}]\) OR \((\%=-\sqrt{2})\) you to define the variable to be solved for.

Changing to complex mode in the CFG menu will find the other two imaginary solutions:



\section*{E.g. 4 Solving simultaneous equations}

Solve the following system of equations: \(\left\{\begin{array}{l}x+y=-3 \\ x=y-1\end{array}\right.\)
In the CAS, enter: LINSOLVE ( \(\mathrm{X}+\mathrm{Y}+3\) AND \(\mathrm{X}-\mathrm{Y}+1\), X AND Y ). Note that when entering the two equations you must highlight the first one before pressing AND (obtained via SHIFT (-)).

Alternatively you can use \(X+Y=-3\) AND \(X=Y-1\) instead of the expressions.
The result is: \(\quad(X=-2)\) AND \((Y=-1)\)
LINSOLVE can be used for any number of simultaneous variables. Step by step mode will show the solution process using row manipulation of an augmented matrix.

The LINSOLVE function can also be used to solve problems of the form below.

Solve the system of equations: \(\left[\begin{array}{cc}2 & k \\ q+3 & -1\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 5\end{array}\right]\)

The command is
LINSOLVE ( 2. \(\mathrm{X}+\mathrm{K} . \mathrm{Y}-1\) AND ( \(\mathrm{Q}+3\) ). \(\mathrm{X}-\mathrm{Y}-5, \mathrm{X}\) AND Y )
and it produces the results shown.


\section*{E.g. 5 Solving a simultaneous integration}

A continuous random variable \(X\), has a probability distribution function given by:
\[
f(x)= \begin{cases}\frac{a+b x+x^{2}}{9} & \text { for } 1 \leq x \leq 4 \\ 0 & \text { elsewhere }\end{cases}
\]

Given that \(P(x \leq 2)=\frac{5}{27}\), find the values of \(a\) and \(b\).

From the fact that it is a p.d.f. we know that \(\int_{1}^{4} f(x) d x=1\). We can use this to get the first expression in terms of \(a\) and \(b\).


As can be seen above, the initial integration gives an equation involving a fraction. This can be simplified by multiplying both sides by 6 , highlighting the entire equation first. Notice that when the final simplification is equal to zero, the calculator does not bother to include the ' \(=0\) '.

The second probability tells us that \(\int_{1}^{2} f(x) d x=\frac{5}{27}\) and this gives the second of the pair of simultaneous equations in exactly the same fashion.


We can now use the LINSOLVE function to find \(A\) and \(B\). While the second linear equation is still highlighted, fetch the LINSOLVE command from the SILV menu. Then press left arrow once and up arrow twice to highlight the linear expression again as shown right.
\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline
\end{tabular}

Now, while the entire expression is highlighted, as shown above, press SHIFT (-) to obtain the 'AND'. The result should be as shown right.


The other equation is still available from the CAS History. To fetch it, press HOME and highlight the equation. Pressing EKHD will echo it to the point of the cursor. Note that if any portion of the expression in the editor is highlighted when you perform an EEHD then it will be replaced by the new expression being echoed.


We can then finish off the LINSOLVE command by pressing right arrow to move to the second parameter position and then entering "A AND B". At that point we can press ENTER to obtain the values of A and B.


\section*{E.g. 6 Defining a user function}

The DEF function allows you to define your own functions, which are then available for use. In the example below it has been used to define Fermat's prime function \(f(x)=2^{2^{x}}+1\). Note that the sequence of keys is:

HLGE \(\nabla\) ENTER ALPHA \(F\) (XTO \(\triangle\) \(\Delta\) SHIFT \(=2 \widehat{X^{y}} 2 X^{y} X T \theta \Delta \Delta \Delta\) +1 ENTER

The CAS will then echo the function back to you and, if you go to the VARS view, you will find that it is now a defined variable.


Although we used \(X\) as our variable here, there is no reason for this. We could just as easily
have defined it as \(f(K)=2^{2^{K}}+1\).

You can now call this function by simply typing, for example, \(F(5)\).


We can now test to see if this is a prime number by using the ISPRIME? function from the MATH menu. This is found in the Integer section as shown right.


It returns a value of 0 (false) indicating that it is not a prime number.

Using the FACTOR function from the HLT shows that its factors are 641 and 6700417.


\section*{On-line help}

One of the most helpful features of the hp 40 g CAS is the on-line help provided by the SYNTAX button (SHIFT 2). Pressing SYNTAX will display the menu shown to the right. You can use the up or down arrow keys to scroll through this list but it is very extensive and it is
 far quicker to press the button corresponding to the first letter of the function on which you require information. For example, if you want help on the NEXTPRIME function then press the \(\div\) button (letter \(\mathbf{N}\) ) to jump to the first function beginning with N .

The help screen can be a little crowded, as you can see to the right, but generally contains an extremely useful summary. An example is always given and pressing
 editing screen.

There will often be up to three cross-references to other functions. Pressing


Pressing EXIT will take you back to the editing screen without any action, while pressing \(\operatorname{WAIN}\) will take you back to the SYNTAX menu.

It is strongly suggested that you spend some valuable time going carefully through this collection of help pages. They will give you an excellent feel for the capabilities of the CAS.

\section*{Configuring the CAS}

This can be done in a number of ways and only an overview will be given here. One method is via the configuration line (CFG) at the top of each menu. The line shown right of CFG \(R=X \quad S\) means that the calculator is set to exact-real mode, that \(X\) is the
 current variable, and you are working in Step by step mode.

If you select this option of the menu then you will see the further menu shown to the right. At the top of this menu is more information about the current configuration.


The example to the right means that
( \(\mathrm{R}=\) ) \(\quad\) You are in exact-real mode
(STEP) Step by step mode is selected
( \(\downarrow\) ) Polynomials are written with their terms in descending order by exponent
(X) \(\quad \mathrm{X}\) is the current variable
(13) Modular calculations are carried out in Z/13Z \((p=13)\),
and;
(||) You are working in Rigorous mode (that is, using absolute values).

Below the title bar you can see the first section of a series of alternatives which let you manipulate the configuration. Most alternatives are toggles having only two values. For example, choosing Complex and pressing ENTER will cause the menu to momentarily disappear and then re-display with the new setting of Rea1. Pressing ENTER again will revert back to Complex. Using them you can choose:
- Quit config (when you're finished making changes)
- Complex (or Rea1)
- Approx (or Exact)
- Direct (or Step by Step see following page)
- \(1+x+x^{2}\) (or \(x^{2}+x+1\); governs how polynomials will display)
- Sloppy (or Rigorous, if you want to work in absolute values)
- Num. factor (or Symb factor)
- Cmp1x vars (or Real vars if you want all symbolic variables to be assumed to be and treated as real)
- English (or Français if you want the help screens to be in French)
- Default cfg (which is \(R=\) STEP \(\downarrow \times 13\) ||).

Pressing Cikld takes you out of the CFG menu (as does choosing QUIT from the menu and confirming it with OK ) but does not discard any changes you have made.

The name of the current variable, as well as the value of the variable MODULO, can be changed by means of the SHIFT SYMB view, or by using the VARS key. Many of the configurations addressed in the CFG menu are also referenced in these views.

Press ON to exit the VARS configuration view.


> Calculator Tip
> Changing the configuration can have a profound effect on the behavior of the CAS. Only minimal information has been given here, and before you play with these configurations too extensively it is suggested that you read carefully the relevant information in the manual and/or the information in Renée de Graeve's book mentioned in the introduction to this appendix on page 310 .

\section*{Tips \& Tricks - CAS}
1) In CAS, angles are always expressed in radians. When you are the calculator HOME screen, you can use the MODES view to change this default but this does not affect the CAS.
2) Step by step mode is quite useful for students. Choose Step by step mode to view the details of the calculations, displayed on the screen. After each step you are requested to press [0K to proceed to the next stage. The alternative is Direct mode, in which only the result is displayed.
3) Incredible as it may seem, the CAS is capable of infinite precision when manipulating integers (memory permitting). To see this in action try evaluating 200 factorial and then press VIEWS. You can now scroll through all 375 digits of the result!
4) Don't use a summation variable of lower-case \(i\). This is assumed by the CAS to be the unit imaginary value - the root of \(\mathrm{x}^{2}+1=0\).
5) Although you can use the integration symbol provided on the keyboard it has disadvantages outlined on page 82. Use the INTVX function instead. See the example on page 320.
6) The COLLECT function referred to earlier will factorize over the set of integers. For example, COLLECT \(\left(x^{2}-4\right)\) will result in \((x+2)(x-2)\), whereas COLLECT \(\left(X^{2}+4\right)\) will result in \(X^{2}+4\) back again.

On the other hand the FACTOR function will factorize over the irrational and complex sets too. Entering FACTOR \(\left(X^{2}+2\right)\) will result in the expression \((x+\sqrt{2} i)(x-\sqrt{2} i)\).
7) The infinity symbol can be found in the Constants section of the MATH menu but can also be obtained by pressing SHIFT 0. Pressing (-) first will produce \(-\infty\), while pressing ( - ) twice will give \(+\infty\). These are often needed for use in the LIMITS function.
For example, evaluating \(\operatorname{LIMIT}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x},+\infty)\) will give \(1 / 2\) (after a very long wait).
As with the infinity symbol there is also a shortcut for the symbol \(i\). Just press SHIFT 1.```

